Reprinted from

Tenth International Symposium
Machine Processing of
Remotely Sensed Data
with special emphasis on

Thematic Mapper Data and

Geographic Information Systems

June 12 - 14,1984

Proceedings

Purdue University
The Laboratory for Applications of Remote Sensing
West Lafayette, Indiana 47907 USA

Copyright © 1984
by Purdue Research Foundation, West Lafayette, Indiana 47907. All Rights Reserved.
This paper is provided for personal educational use only,
under permission from Purdue Research Foundation.
Purdue Research Foundation

MULTIRESOLUTION SPATIALLY CONSTRAINED
CLUSTERING OF REMOTELY SENSED DATA ON THE
MASSIVELY PARALLEL PROCESSOR

J.Cs TILTON

Science Applications Research
Riverdale, Maryland

ABSTRACT

The improved spatial resolution of
the Landsat Thematic Mapper (TM) and
other mnew earth resources satellites
increases the need for effective
utilization of spatial information 1in
machine processing of remotely sensed
data. In the past it has proved
difficult to implement algorithms
exploiting spatial information because of
the computational and organizational
constraints imposed by the available
serial computers. Fortunately, recently
developéd parallel computers, such as the
Massively Parallel Processor (MPP) at
NASA“s Goddard Space Flight Center, are
well suited for algorithms that exploit
spatial information through utilizing
neighborhoods of pixels. In an earlier
paper, we explored region growing on the

MPP as one promising technique for
utilizing spatial information. In this
paper, we discuss a multiresolution

spatially-constrained <clustering (MSCC)
algorithm which we are implementing on
the MPP. The MSCC algorithm wuses a
coarse-to-fine resolution schema which
has as its core a region growing
algorithm similar to the one described
earlier and region switching and region
splitting algorithms which are described
in this paper. Following a detailed
discussion of the MSCC algorithm we
consider some applications of the
algorithm.

I. INTRODUCTION

The improved spatial resolution of
the Landsat Thematic Mapper (TM) and
other new earth resources satellites
increases the need for effective
utilization of spatial information in
machine processing of remotely sensed
data. Using conventional per pixel
algorithms, several studies have shown
that the 30-meter resolution TM data

tends to produce poorer analysis results
than the 80-meter resolution MSS data.
(Markham and Townshend, 1981; Williams
et al, 1983; Alexander et al, 1983) It
is generally agreed that a main reason
why TM data produces such poor results
with per pixel algorithms is these
algorithms do not use the spatial
information contained in the TM data to
resolve confusions caused by the greater
spatial detail.

In the past it has proved difficult

to implement algorithms exploiting
spatial information because of the
computational and organizational

constraints imposed by the available
serial computers. Fortunately, recently
developed parallel computers are well

suited for algorithms that exploit
spatial information through utilizing
neighborhoods of pixels. One such
computer is the Massively Parallel
Processor (MPP), which was delivered in
May 1983 by Goodyear Aerospace

Corporation to NASA“s Goddard Space
Flight Center. (Batcher, 1980; Schaefer
et al, 1982) The MPP is a Single
Instruction, Multiple Data stream (SIMD)
computer containing 16,384 bit serial
microprocessors logically connected in a
128-by-128 array with each element having
direct data transfer interconnections
with its four nearest neighbors.

In an earlier paper, we explored
region growing on the MPP as one
promising technique for utilizing spatial
information in machine ©processing of
remotely sensed data. (Tiltom and Cox,
1983) In this paper, we discuss a
multiresolution spatially-constrained
clustering (MSCC) algorithm which we are
implementing on the MPP. The MSCC
algorithm uses a coarse~to-fine
resolution schema which has as its core a
region growing algorithm similar to the
one described earlier along with region
switching and region splitting algorithms

1984 Machine Processing of Remotely Sensed Data Symposium

297

which are described in this paper. Later
in this paper we will give a description
of the overall design of the MSCC
algorithm followed by a detailed
discussion of each major step. Following
this discussion we consider some
applications of the algorithm.

Before we discuss our
multiresolution SCC algorithm in more
detail, we Dbriefly describe Parallel
Pascal, the language we used for
implementing the MSCC algorithm on the
MPP. This high level language for the
MPP greatly facilitated the development
of our algorithm. :

II. PARALLEL PASCAL

In order to fully exploit the
capabilities of the MPP and make it a
useful tool to not only the image
pProcessing researcher, but also the
remote sensing applications scientist,
the MPP developers placed a high priority
on the development of a high level
language to be wused on the MPP. The
first high 1level language developed,
known as Parallel Pascal, is an extended
version of the popular Pascal programming
language. Developed by Reeves and
Bruner* at Purdue University, Parallel
Pascal was designed to be easy to use,
portable, efficient, and was designed to
provide good error detection. (Reeves
and Bruner, 1980) The parallel
extensions are a small number of
carefully chosen features with an eye
toward making Parallel Pascal portable
even among the wide variety of parallel
architectures. These extensions to
Pascal are few and straightforward to
allow the declaraton of parallel array, a
few parallel manipulation and indexing

functions and extended control
structures.
Parallel arrays are explicitly

declared in Parallel Pascal by affixing
the word PARALLEL to the standard Pascal
array declaration, viz,:

name: PARALLEL ARRAY[index range] OF type

This explicit declaration of parallel
arrays provides the programmer direct
control over which arrays are operated on
in parallel. The last two dimensions of
parallel arrays are restricted in
Parallel Pascal to 128-by-128 (or the
last dimension to 16,384) to conform with

* A. P. Reeves is now with the School
of Electrical Engineering, Cornell
University, and J. D. Bruner is now
with the Lawrence Livermore Laboratory.

298

the architecture of the MPP.

Operationally, parallel arrays are
different from standard Pascal arrays in
that parallel arrays can be added,
divided, compared, etc. as aggregate
units rather than element-by-element.
Special indexing mechanisms are provided
to selectively operate on particular
portions of a parallel array. Standard
elemental functions (see Table 1 of
(Tilton and Cox, 1984)) perform the same
operation on each element of a parallel
array, 1independently and in parallel.
Special transformational functions (see
Table 2 of -(Tilton and Cox, 1984))
perform transformations upon the entire
parallel array. We will introduce some
of these functions below in the
discussion of the MSCC algorithm.

III. GENERAL DESCRIPTION OF OUR APPROACH

The general design for the MSCC
algorithm is as follows:

1. 1Initialize the clustering by
segmenting the image into n-by-n
subregions, where n>>2.

2. Cluster the data using iterative
parallel region growing and region
switching.

3. If the <current <clustering 1is done
with the finest resolution subregions
(usually n=2), go to step 7.
Otherwise continue to the next step.

4, Generate a finer resolution set of
subregions from the data (e.g. let
n“=n/2) and initialize the region
labeling of these subregions with the
region labels from the previous
clustering.

5. Use a region-splitting process to
split out regions that were not
resolved in the coarser resolution
clustering.

6. Return to step 2.

7. Refine region edges by allowing
individual pixels in region edge
subregions to switch to a neighboring
region where appropriate.

8. Stop.
Sections IV through VIII below

discuss in more detail the major steps of
the MSCC algorithm.

1984 Machine Processing of Remotely Sensed Data Symposium

IV. INITIALIZATION

The MSCC algorithm is initialized by
segmenting the image into n-by-n
subregions. For a p-by~p pixel image, n
should be chosen to be the larger of 2 or

/1287, where B3 designates the
"ceiling" of x, i.e., the next larger
integer (we consider square images for
convenience; the generalization to

rectangular images is not difficult).
Such a choice of n most efficiently
utilizes the MPP microprocessor array and
brings the whole image into the array,
albeit at a coarse resolution if n >> 2.
An m-by-m array of subregions (each sized
n-by-n pixels) is formed from the p-by-p
data set, where [m=p/n] and |x] is the
"floor" of x (the next smaller integer).
(We throw away a small portion of data -
less than n lines and/or columns - if n
does mnot divide p evenly.) We then load
the initial subregion feature values
directly into the MPP"s 128-by-128 array
of microprocessors, one subregion per
microprocessor. The region feature
values we use are mean, standard
deviation and degrees of freedom. In
addition, a region label is given to each
initial subregion. The 1label wvalues
given to each initial subregion are
calculated based on the row (i) and
column " (j) of the microprocessor the
region feature values are loaded into.
We use the label values (i-1) + (j-1)%m;
i=1,2,...,m; j=1,2,..., m. (If m<128,
we load the initial region feature value
into the upper left m-by-m array of MPP
microprocessors and place impossible
values into the remaining locations, e.
g. mnegative values are impossible for
all feature values and values >=m¥*%*2 are
impossible region degree of freedom
feature values.)

We now have initial subregion mean,
standard deviation, degree of freedom and
label values loaded into the 128-by-128
MPP microprocessor array. These
variables can be declared in Parallel
Pascal as:

mean: PARALLEL ARRAYI[1..128, 1..128]

OF REAL;
stdev: PARALLEL ARRAY[1..128, 1..128]
OF REAL;
dof: PARALLEL ARRAY[1..128, 1..178]

OF INTEGER;
label: PARALLEL ARRAY[1..128, 1..128]
OF INTEGER;

Now that the algorithm initialization 1is
complete, we go to the second step:
iterative parallel region growing and
region switching.

V. REGION GROWING AND REGION SWITCHING

Alternate iterations of parallel
region growing and parallel region
switching form the core of our MSCC
algorithm. First we invoke region
growing. Here all neighboring regions
are compared (in parallel) in terms of a
predefined similarity criterion, and the
most similar ©pair of regions in the
entire region are merged. Similarity
criteria for all neighboring regions are
recomputed and the most similar pair of
regions are again merged. After a preset
number of region growing iterations,
region switching is invoked. Region
growing and region switching are then
alternated until a preset minimum number
of regions 1is reached, or a preset
minimum similarity criterion is met.

We mnow discuss parallel region
growing and parallel regionm switching in

turn. We also give portions of the
Parallel Pascal program for parallel
region growing, as an example of

programming in Parallel Pascal.
A. ITERATIVE PARALLEL REGION GROWING

The first step of parallel region
growing is to compare (in parallel) for
each region each neighboring region in
terms of a predefined similarity
criterion. This is dome in Parallel
Pascal by declaring as parallel arrays
"neighbor" feature value nbmean, nbstdev,
nbdof and nblabel variables (as above)
and shifting the mean, stdev, dof and

label values from the specified
neighboring microprocessor into the
corresponding neighbor feature value
parallel array. For example, the
following Parallel Pascal statements
"rotate" the array values one
microprocessor from right to left ("east"
neighbor) for all microprocessors in
parallel:

nbdof := rotate(dof, 0, -1) ;

nbmean := rotate(mean, 0, -1) ;

nbstdev := rotate(stdev, 0, -1) ;

nblabel := rotate(label,0,-1) ;

The rotate function <circularly rotates
the data within the parallel array in a
specified direction. We use the rotate
function rather than the shift function
(which does an end-off shift of the data)
because of efficiency considerations. We

look at the Meast" neighbor first,
followed by the "southeast," "south," and
"southwest" neighbors. (We don”t have to
look "west," ‘'"northwest," "north" and
"northeast" because a look '"west" is
redundant with a 1look '"east," etc.)
Using rotate, we can bring the

1984 Machine Processing of Remotely Sensed Data Symposium

299

"southeast" neighbor into each
microprocessor memory by using one rotate
of the "east" neighbor values to the
"north", rather than by two shifts of the
original feature values: one to the
"west" followed by one to the '"mnorth."

The zrotate of "east” neighbor values to
the "north" is accomplished in Parallel
Pascal as follows:

nbdof := rotate(mnbdof, -1, 0) ;
nbmean := rotate(nbmean, -1, 0) ;
nbstdev := rotate(nbstdev, -1, 0) ;
nblabel := rotate(mblabel, -1, 0) ;

The "south" neighbor is obtained through
an "east" rotation of the "southeast"
neighbor values, and the "southwest"
neighbor 1is obtained through an "east"
rotation of the "south" neighbor values.

For each neighbor, the similarity
criterion is calculated for all
microprocessors in parallel through a
function call:

compare(mdir,dof,nbdof ,mean,nbmean,
stdev,nbstdev,testval) ;

where mdir is a scalar variable
designating which neighbor 1is being
considered, and testval is the result of
the similarity <criterion calculation.
The similarity criterion we wuse is the
geometric mean (or, equivalently, the
product) of the probabilities of random
occurrence of the t- and F-statistics
calculated from a modified Student”s
t-test and modified F~ratio test,
respectively. (Tilton and Cox, 1983,
p.132)

Some of the microprocessors at the
edge of the image will contained invalid

values for testval. We flag these
microprocessors by storing impossible
degree of freedom values in those
locations (dof = m*m). The value of
testval is set to zero for these
microprocessors using the following

Parallel Pascal "where" statement:
where dof > maxdof do testval := 0.0 ;

(The compare function itself zeros the
testval values appropriately at the edge
of the MPP microprocessor array.)
Neighboring pixels that are already in
the same region are eliminated by the
following statement:

where nblabel = label do testval := 0.0 ;

We record the best comparison value from
testval and the corresponding merge
direction from mdir in the parallel
arrays bestval and bestmdir,

respectively. We initialize bestval and
bestmdir when mdir=l1 (corresponding to
the "east" neighbor) with the following
parallel assignment statements:

bestval := testval ;
bestmdir := mdir ;

For mdir = 2, 3 and 4 (corresponding to
the "southeast," "south," and
"southwest," mneighbors) the values of

bestval and bestmdir are updated with the
following pair of statements:

where testval > bestval do
’ bestmdir := mdir ;
where bestmdir = mdir do
bestval := testval ;

The best merge for the entire image
is then found by merging the pair of
regions associated with the overall best
comparison value in the bestval array.
These best pair regions are found with
the following statements:

maxtval := max(bestval,l,2) ;
if maxtval >= threshval do
begin (* find best pair of regions *)

mask := 0 ;
where bestval = maxtval do mask:=1 ;
mdir := max(mask*bestmdir,1,2) ;
case mdir of
1: begin
nblabel := shift(label,0,-1) ;
end ;
2: begin
nblabel := shift(label,-1,-1) ;
end ;
3: begin
nblabel := shift(label,-1,0) ;
end ;
4: begin
nblabel := shift(label,-1,1) ;
end ;
end ;
rlabel := max(mask*label,l,2) ;
nbrlabel := max(mask*nblabel,l,2) ;
end

else
begin (% exit subroutine ¥)

end
end ;

The max(array,l,2) subroutine returns the
maximum value from the specified
two~dimensional parallel array. The
subroutine is exited if the maximum best
comparison test value is 1less than a
preset threshold value (threshval).

The specified pair of regions
(rlabel and nbrlabel) are merged with the
following Parallel Pascal statements:

1984 Machine Processing of Remotely Sensed Data Symposium

300

(* Extract the feature values for the
regions to be merged. %)

mask := 0 ;

where label = rlabel do mask := 1 ;
vdofll]l := max(mask¥*dof,1,2) ;
vmean[1l] := max(mask*mean,l1,2) ;
vstdev[l] := max(mask*stdev,1,2) ;
mask := 0 ;

where label = nbrlabel do mask := 1 ;
vdof[2] := max(mask*dof,1,2) ;
vmean[2] := max(mask*mean,l1,2) ;
vstdev[2] := max(mask*stdev,1,2) ;

(* calculate feature values for new
region *)

vdof [0} := vdofl[1] + vdofl[2] + 1 ;
vmean[0] := (vdofl[1]+1)*ymean[1]

+ (vdofl[2]+1)¥%vmean[2] ;
vmean[0] := vmean[0]/(vdof[0}+1) ;
vstdev[0] := vdoflll*sqr(vstdev[1])

+ (vdofl[1]l+1)*sqr(vmean[1])

+ vdofl[2]*sqr(vstdev[2])

+ (vdofl2]+1)*sqr(vmean[2])

- (vdof[0]+1)*sqr(vmean[0]);
vstdev[0] := sqrt(vstdev[0]/vdof[0]);

(* Update new region *)

where label = nbrlabel do

label := rlabel ;
where label = rlabel do
begin
dof := vdofl[O] ;
mean := vmean[0] ;
stdev := vstdev[0] ;
end ;

Note that vdof, vmean and vstdev are 3

element "serial" wvectors. The region
merging process itself is largely a
serial operation, whereas finding which

pair of regions to merge is a highly
parallel operation.

B. ITERATIVE PARALLEL REGION SWIWCHING

In parallel region switching ail
original subregions are compared to the
region to which they currently belcng and
to any mneighboring regions (subregions
internal to a region have no neighboring

region, and thus cannot participate in
region switching). (After initialization
above, we stored the original subrezion
feature values in the parallel arrays
omean, ostdev, odof and olabel.) The
comparison with the current region is
done with the subregion temporarily
removed from the region. The regicn

switching criterion 1is the difference
between the subregion comparison with the

neighboring region and the subregion
comparison with the current region. The
subregion with the largest region

switching criterion value is then
switched from its current region to the
indicated neighboring region. The region
switching «criterion 1is recalculated for
all subregions, and the region switching
process is repeated iteratively until no
more region switches occur. Then one
more region iteration is performed, after
which region switching is again invoked.
Region switching is always <continued
until no more region switches occur.

Region switching is needed because
as a region grows, its feature values may
gradually become very different from its
original feature values. When this
occurs, the region feature values may
become sufficiently different from the
feature values of <certain subregions
making up the region that these
subregions may become more similar to
some adjacent region. The region
switching process switches these
subregions over to the appropriate
neighboring region.

VI. TRANSITION TO CLUSTERING
AT FINER RESOLUTION

After the region growing and region
switching process converges, we generate
a finer resolution set of subregions from
the original data and initialize the
clustering of these subregions with the

region cluster map formed from the
previous coarser resolution set of
subregions. This is the multiresolution

portion of the MSCC algorithm. If the
previous set of subregions were of size
n-by-n, the new finer set of subregions
will be of size n”"-by-n” with n” < n.
For example, we could have n"=n/2.

We do multiresolution spatially
constrained clustering rather than
single-resolution spatially constrained
clustering for two related reasons.
Starting the MSCC algorithm with
subregions sized so that the entire data
set can fit into the 128-by-128 MPP
microprocessor a&array greatly facilitates

piecing together clusterings of the
entire data set if the data set is larger
than 256-by-256 pixels. The piecing

together process 1is facilitated by this
because of the second reason we use
multiple resolutions: the coarser
resolution clusterings initialize the
finer resolution clusterings with global
information about the data set. This
global information serves to provide
direction to the finer resolution
clusterings and should substantially
improve the overall quality of the final
cluster map. It also tends to make each
section of the data set to have

1984 Machine Processing of Remotely Sensed Dch Symposium

301

clusterings that are more consistent with
each other at the boundaries.

VII. REGION SPLITTING

When we go from a coarser resclution
set of subregions to a finer resclution
set, certain smaller scale features may
appear in the finer resolution set of
subregions that were not detectable in
the <coarser resolution set. Because of
this, we need to be able to split new
regions out from the set of <cluster
regions obtained at coarser resolution.

Our region-splitting approach is
quite similar to our region switching
approach. For region splitting, each

n”“-by-n” subregion 1is compared to the
cluster region it is currently assigned
to. The subregion that is most unlike
its current cluster region is found, and
if the comparison test value is less than
a preset threshold, the subregion is
split out of its current cluster region
to form a new region. The subregion to
current cluster region comparisons are
repeated, and the most dissimilar
subregions are split out until no
subregion is dissimilar enough to pass
the threshold test.

VIII. FINAL REGION EDGE REFINEMENT

After region splitting the MSCC
algorithm returns to iterative parallel
region growing and region switching (n
now equals n”). If n is greater than
some minimum (usually =n=2), a finer
resolution set of subregions is again
generated and region-splitting is again
invoked. If n 1is equal to the preset
minimum value, after a round of region
growing and switching, the MSCC algorithm
continues on to the step described in
this section: final region edge
refinement.

Region edge refinement 1is actually
region switching done on 1-by-1
"subregions." Since 1 pixel "subregions"
cannot have a standard deviation, the
region edge refinement comparison test
reduces to a comparison of grey-scale
value of each "subregion" to the mean of
its current cluster region and the mean
of each mneighboring cluster region.
(Pixels not on cluster region edges
cannot participate in region edge
refinement.) We use the following
comparison test. Let the parallel array
omean hold the the grey-scale values of

each l1-by-1 "subregion," and 1let mean
contain the mean value of the current
cluster regions. (The omean parallel

array 1is larger than 128-by-128, but by
holding four values in each MPP
microprocessor, an omean parallel array
as large as 256-by-256 can be stored in
the MPP array.) Let nbmean contain the
mear values of a neighboring region in a

particular direction ("east",
"southeast,” etc.). The comparison test
is:

testval = ABS{(mean-omean) .

+ SIGN(mean-omean)*ABS(nbmean-omean)

After this comparison test is calculated
for all neighboring regions, the l-by-l
"subregion" with the largest comparison
test value is switched to the appropriate
neighboring region, if that largest test
value 1is larger than a preset threshold

value (e.g. threshold = 0.0). The
comparison test are recalculated, and the
"subregion" with the next largest
comparison test is switched, etc., until

no 1-by-1 "subregion" passes the

threshold value test.

We now have the final region cluster
map from the MSCC algorithm for the
current portion of the data set. If the
data set is larger tham 256-by-256, the
processing of the remaining portions of
the data set must be completed and the
region cluster maps must be stitched
together. This stitching process will be
the subject of a later paper.

IX. APPLICATIONS OF MULTIRESOLUTION
SPATIALLY CONSTRAINED CLUSTERING

The MSCC algorithm can be used
simply to produce segmentations of
remotely sensed imagery. If a
segmentation is the desired final result,
one would most likely want to used very
low threshold values in the various
comparison tests in the algorithm. If
the <comparison test thresholds are too
high, the resulting <cluster map would
containr too many regions to provide a
useful segmentation.

The MSCC algorithm can also be wused
as a very effective "front-end" for a
couple other algorithms. One is the ECHO
classification algorithm. (Kettig and
Landgrebe) ECHO runs in two stages: a
segmentation stage and a sample
classification stage. Revising ECHO to
use the MSscCcC algorithm in the
segmentation stage should substantially
improve the performance of the ECHO
algorithm.

The Cluster Compression Algorithm
(ccA) is the other algorithm for which
the MSCC algorithm can serve as a very

1984 Machine Processing of Remotely Sensed Data Symposium

302

effective "front-end." (Hilbert, 1977)
The CCA operates by clustering data over
blocks (e.g. 16-by-16 pixels or 8-by-8
Pixels) and storing the cluster map for
each block and the mean values of the
clusters in each block. Data compression
factors of 10 or more can be obtained
using this approach. The CCA could be
modified to wuse the MSCC algorithm to
provide a cluster map and cluster means
for the entire data set. A grid (e.g.
16-by-16 or 8-by-8 pixels) could then be
imposed on the cluster map, and the
cluster region labels could be renumbered
in each resulting cluster map block.
Then the cluster map for each block and
the mean values of the clusters in each
block can be stored as before. In this
case, however, there would be a variable
number of clusters in each block and the
amount of compression would depend on the
thresholds set in the MSCC algorithm and
on the data set itself.

X. FINAL REMARKS

The MSCC algorithm is currently
designed to process single-band images.
However, the algorithm is restricted to
single~band images only by the comparison
tests currently wused in the region
growing, switching and splitting
processes and in the final cluster region
refinement process. Generalizing these

comparison tests to multi-band tests
would allow the MSCC algorithm to process
multi-band images. The easiest way to do
this is to change the tests from

single-band (univariate) tests to
multiple-univariate tests. It would be
more difficult to make the comparison
tests into multivariate tests. We will
be looking into this problem in the
future.

The MSCC algorithm wuses the full
power of the MPP in the portions of the
algorithm that calculate comparison tests
between neighboring regions. The actual
merging of a pair of regions, the
switching of region assignment, or the
splitting out of a region are
substantially serial operations, however.
Nevertheless, the MSCC algorithm is
projected to run significantly faster on
the MPP than on any serial ©processor.
(Firm estimates of comparable execution
times were not available at this
writing.)-

Multiresolution Spatially-Constrain-
ed Clustering (MSCC) offers one way of
utilizing spatial information in the
analysis of remotely sensed imagery data.
Without the Massively Parallel Processor
(MPP) it would be impractical to run the

MSCC process on anything but a very small
data set. Implemented on the MPP, or
another similar large parallel computer,
the MSCC algorithm becomes an effective
method for segmenting remotely sensed
data using a spatially~constrained
clustering process.

XI. REFERENCES

Alexander, D., et. al., "Spectral,
Spatial and Radiometric Factors in Cover
Type Discrimination," Proceedings of _the
1983 International Geoscience and Remote

Sensing Symposium, San Francisco, CA
(1983).

Batcher, K.E., '"Design of a Massively
Parallel Processor," IEEE_Transactions on
Computers, Vol. c-29, PP 836-840
(1980).

Burkley, J.T., C.T. Mickelson, "MPP: A
Case Study of a Highly Parallel System,"
Proceedings of the AIAA Conference on
Computers_in_Aerospace #4, (1983).

Hilbert, E.E., "Cluster Compression
Algorithm: A Joint Clustering/Data
Compression Concept," JPL Publication
717-43, NASA Jet Propulsion Laboratory,
Pasadena, Califormnia (1977). . :

Kettig, R.L. and D.A. Landgrebe,
"Classification of Multispectral Image
Data by Extraction and Classification of
Homogeneous Objects," IEEE Transactions
on Geoscience Electronics, Vol. GE-10,
No. 1, pp. 19-26 (1976).

Markham, B.L. and J.R.G. Townshend,
"Land Cover Classification Accuracy as a
Function of Sensor Spatial Resclution,"
Proceedings of the Fifteenth
International Symposium on Remote Sensing

of Environment, Ann Arbor, MI (1981).

Reeves, A.P., and J.D. Bruner, “High
Level Language Specification and
Efficient Function Implementation for the
Massively ©Parallel Processor," Interim
Report TR-EE_80-32, School of Electrical
Engineering, Purdue University, West
Lafayette, IN (1980).

Reeves, A.P., and J.D. Bruner, "The
Language Parallel Pascal and Other
Aspects of the Massively Parallel
Processor,"” ©Final Report for NASA Grant
2-3, School of Electrical Engineering,
Cornell University, Ithaca, NY (1982).

Schaefer, D.H., J.R. Fischer, K.R.
Wallgren, "The Massively Parallel
Processor," AIAA Jourmal_ _of Guidance,
Control, _and Dynamics, Vol. 5, No. 3,

1984 Machine Processing of Remotely Sensed Data Symposium

303

pp. 313-315 (1982).

Tilton, J.C., and s.C. Cox,
"Segmentation of Remotely Sensed Data
Using Parallel Region Crowing, "
Proceedings of the Ninth International
Symposium__on Machine Processing_ _ of
Remotely Sensed Data, West Lafayette, IN
(1983).

Tilton, J.C. and J.P. Strong,
"Analyzing Remotely Sensed Data on the
Massively Parallel Processor,"
Proceedings of the Tenth International
Symposium__on Machine Processing of
Remotely Sensed Data, West Lafayette, IN
(1984).

Williams, D.L., et. al., "Impact of

Thematic Mapper Sensor Characteristics on
Classification Accuracy," Proceedings_of

the 1983 International _Geoscience_ _and
Remote_ Sensing Symposium, San Francisco,
CA (1983).

James C. Tilton is a Senior
Scientist with Science Applications
Research (SAR), Riverdale, MD. He
received a B.A. in Electrical

Engineering, Environmental Science and
Engineering and Anthropology from Rice
University in 1976; M.S.E.E. from Rice

University also in 1976; a M.S. in
Optical Sciences from the University of
Arizona in 1978 and a Ph.D. in
Electrical Engineering from Purdue

University in 1981. Since 1982 Dr.
Tilton has been conducting and directing
research in remote sensing data analysis
techniques as a contractor at the NASA

Goddard Space Flight Center. His
research interests involve the
development of optimal techniques for
analyzing remotely sensed data. In
particular this includes investigating
techniques for incorporating spatial
information into the analysis process and
applying artificial intelligence
techniques to the understanding of

remotely sensed imagery.

1984 Machine Processing of Remotely Sensed Data Symposium
304

