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I. ABSTRACT

Early work performed with simualted
Thematic Mapper (TM) data, and later work
with actual TM data, have demonstrated the
inadequacy of per-point processing strat-
egles for surface feature ildentification
in many applications. The single pixel
provides an increasingly inadequate repre-
sentation of the surface feature as the
spatial resolution of the imaging system
increases. It 1is assumed here, with some
substantiation from previous work (Wacker,
1972), that the accuracy of surface
feature 1dentification and description
increases as the number of observations on
whilch to infer the desired information
increases. An algorithm for segmenting
multispectral images into areas constitut-
ing surface features 1s presented. The
scene segmentation employs a region
growing approach whilch uses edge elements
and thelr orlentation as reglon delimit-
ers. Those edge elements which most
logically serve to delimit each particular
reglon are determined individually for
each potential reglion through an iterative
search process 1n an expanding neighbor-
hood about a set of arbitrarily initially
positioned seeds. Adjacent regions which
are not separated by edges are linked to
form larger regions. Regilon growing 1is
considered successfull 1f each region
ocecurs in a single surface feature.

Reglon linking 1s considered successful if
each reglon provides a sufficient number
of pixels with which to accurately iden-
tify the surface feature which the region
represents, and the linked regions are all
of the same feature. The reglon grow.ng
portion of the algorithm appears to work
reasonably well, as all but a very small
fraction of the reglons appear to occur in
a single feature. The region linking also
appears to perform adequately, as
approximately 80% of all of the test image
pixels form regions of 100 pixels or more.

II. INTRODUCTION

The Thematic Mapper (TM) aboard
Landsat 4 and 5 has provided the earth
sclences with a data form which the
community 1is not yet in a position to
fully utilize with currently available
computer-based image processing tech-
nology. The high spatial resolution and
outstanding radiometric qualities result
in images more appropriately processed
with the well developed human visual
system. As the spatial resolution, samp-
ling frequency, optical transfer proper-
ties, and responsivity of a sensing system
exceeds the predominant spatial frequen-
cies of changing surface features in the
scene belng imaged, the 1image approaches
that of the retinal image. That 1s,
spatially speaking, the object observed
through the imaging system does not differ
dramatically from the object observed
directly. To some, this has connoted an
'improvement' in the imaging system. If,
however, the image processor (information
extractor) component of the lmaging system
is not designed in accordance with the
image properties as provided by the
sensing component, the performance of the
system may actually decrease. While this
has led to bewilderment and frustration
among the engineering community respon-
sible for sensor design, the implications
are extremely positive. That 1is, through
the appropriate modifications and adapta-
tions to the image processing component
tremendous gains in the ability to provide
highly detailed and accurate information
can be achleved. These gains can be
attained at costs far below those asso-
clated with additional upgrades to the
sensor component,

The consequences to the 1maging
system performance of the TM data proces-
sed with Landsat MSS era processing tech-
nology 1s chronicled in detail with the
work in aircraft scanner simulations (Kahn
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& Ball, 1976; Sadowski & Sarno, 1977;
Sadowski, et al., 1977; Morgenstern, et
al., 1977; Landgrebe et al., 1977; Latty &
Hoffer, 1981; Latty, 1981; Markham & Town-
shend, 1981). These studies conferred
that 1ncreases in spatial resolution
result in reduced classification accuracy
when per-polnt type classifiers are used.
These results are further corroborated by
recent results obtained with actual TM
data, simulated MSS data, and actual MSS
data (Williams et al., 1983; Williams et
al., 1984), The conclusion afforded by
these studies, expressed in the simplest
of terms, is that a single pixel provides
an inadequate representation of surface
features for the purpose of identifying
the feature and distinquishing each from
all other features present in a scene.
Thils lnadequacy increases with decreases
In the area represented by the pixel.

The improvements in the information
extraction capabllities with TM data will
depend on the development of algorithms
which are designed with the properties of
TM data in mind. This will require formal
models or concepts of scene structure and
how this structure 1s manifest in the
data. That is, the spectral and spatial
properties of the 1lmage data in relation
to the physical nature and arrangement of
surface features will ‘have to be identi-
fied and understood. In spite of the
paucity of work conducted toward this end,
particularly regarding spatial properties,
numerous advances have been made 1in algor-
ithm design relative to the properties of
higher spatial resolution data. These
advances, however, appear to be mostly
heurlistic 1In nature., The deslgn of image
processing algorithms has been based
largely on the fallures and shortcomings
of predecessor algorithms, rather than an
explicit and exacting formalization of the
scene, the image, and the properties of
the image which afford the extraction of
detalled and accurate information regard-
ing the scene. Contributions in the areas
of scene formalization and 1ts direct ex-
ploitation in algorithm deslgn has been
primarily from the artificial intelligence
community, more specifically in robotics,
where the varlability of the 1maged scene
is very low and the a priorl knowledge
about the scene 1s very high, compared to
scenes of 1nterest to the earth sciences.
The tremendous variation in the earth
surface has discouraged the development of
formal models, but has done little to di-
minish thelr need.

III. APPROACH
A. SOME PROPERTIES OF THE SCENE

While no formal model of the general
scene 1s provided here, some properties of
the scene are noted which serve as the
basis for the design of the algorithm
presented. The 1maged segment of the
earth surface 1s regarded as a two dimen-
sional object or plane. This plane 1is
comprised of areas, ai's (comprising the
surface cover), which are discrete (more
or less) and are definite (but unknown) in
number. The property of being discrete
signifies that the intersection of two
arcas (al n aj) 1s an empty set (while
this may accurately depict most man in-
duced landscapes, intersections may be a
fairly accurate description of ecological
transltion zones). Transition zones in
the discrete approach are assumed to be
a) sufficiently similar to aj as opposed
to al to be regarded as aj, b) sufficently
similar to al as opposed to aj to be
regarded as al, c¢) sufficlently dissimilar
to al and aj to be regarded as a dlstinet
area ak. The dimensions of each area are
assumed to be large compared to the width
of any transition zones which fail to
satisfy these conditions. The union of
all ai's completely defines the plane or
Imaged segment. Each area al has a set of
physical properties or attributes which
distinguish it from all »ther areas and
serves to 1ldentify it as ai. These
properties serve not only as the basls on
which the surface features are disting-
uished, but constitute the basis for any
Iinterest in these features.

Regarding the scene as an assemblage
of discrete areas loglcally leads to
approaches which segment or partition the
scene 1nto discrete areas prior to
attempting to conduct any identification
or description. 1Initlal segmentation of
the scene allows the use of multiple
observatlions over a feature in the attempt
to identify it. Since, for an area of
fixed size and dimension, the number of
observations (i.e., pixels) representing
an area increases approximately as a
square of the increase in spatial reso-
lution. The motivation for segmenting the
scene, therefore, increases with the
spatial resolution of the imaging system.

B. APPROACH TO SEGMENTATION

Localized iterative reglon growing is
employed as the means for segmenting the
scene into discrete ares. The algorithm
is defined at a conceptual level in the
flow dlagram of Figure 1. Basically, the
original multispectral image 1s used to
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BY EDGES

| REGION LABEL IMAGE |

Figure 1. Conceptual level flow
dlagram for scene segmentation.

compute an image of edge magnitudes and
orlentations. This 1s performed through
convolving a series of matricies with each
corresponding window in the image. Each
matrix 1s comprised of constants valued
and arranged to represent a contrast of a
particular compass orientation (see Latty,
1984 for details). 1In this case twelve
matricies were used to represent 15 degree
increments. The edge magnitude and
orientation (EMO) image of each spectral
band is used to compute an image of
edge/non-edge elements through iterative
¢lipping based on the location and
orlentation of the local edge magnitude
maxima. The edge/non-edge (ENE) images
for all spectral bands are then combined
into a single ENE image. Contradlctions
as to location and orientation of edge
elements are resolved based on the
location and orientation of local edge
magnitide maxima between spectral bands.
These procedures are detailed elsewhere
(Latty, 1984). The final ENE image 1is
used to direct the iterative region
growing through specifying the region
limits.

Region Growing. A grid of 'seed'
elements is superimposed on the ENE image.
Each seed address 1s examined in the NE
image to determine whether the seed ~ccurs
on an edge element (i.e., non-zero value).
Seeds which ocecur on an edge element are
shifted half the distance between seeds in
the direction perpendicular to the orien-
tation of the edge element on which they
occur. Any seeds remaining on edges sub-
sequent to belng shifted are ignored
during region growing.

This region growing alorithm involves
two steps - a region limit determination
step, and a reglon membership determina-
tion step. The first step 1s to determine
that set of edge elements which occurs in
the neighborhood of each seed which
defines the limits of the region in which
the seed occurs. The second step 1s to
determine all of the pixels which occur in
the region defined by all of the egde ele-
ments found in the neighborhood. The
domaln of the nelghborhood is defined by
the location and orientation of previously
encountered edge elements and the width of
the search space. The width of the search
space should, at a minimum, be equal to
the spacing between seed elements. Since
it 1s possible for edge elements which
define the 1limits of a region to occur
between other proximal seeds, the width of
the search space should be somewhat larger
than the distance between adjacent seeds.
The accuracy of regilon definition should
increase with increases 1n the width of
the search space, however, processing time
dramatically increases with the dimension
of the search space.

Each of the above steps involves two
phases - an expansion phase and a testing
phase. The expansion phase simply incre-
ments a pointer to the next pixel address
to be tested for a given seed. The test—-
ing phase executes a series of tests on
the pixel of the current address. These
tests depend on whether the process 1s in
the limits determination step or the mem-
bership determination step. All of the
following tests are executed in the region
1imit finding step, and all but the last
test is conducted for the region member-
ship finding step. The tests are as
follows

1) Pixel located in subimage resident
in memory ?

2) Pixel located on seed side of edge
for each edge element previously
encountered for current seed ?

3) Pixel not an edge element ?

For each seed, the expansion and
testing are conducted until the expansion
phase nhas addressed every pixel in the
current layer about the seed (see Figure 2
for the addressing sequence and the ar-
rangement of layers about the seed). The
cycle is then performed for the next layer
of the next seed. The number of times
thls entire set of seeds 1s iterated
through the layer expansion process is
equal to the width of the search space, or
until no pixel of a given layer passes all
three of the above tests for all seeds.
Any seed for which a layer fails to have
at least one pixel pass all of the above
tests, 1s regarded as fully determilned,
and 1is, therefore, skipped in subsequent
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Figure 2. Schematic representation of

the address sequence followed 1in the
expansion phase and the arrangement of
layers about the seed.

layer expansion iterations. Figure 3 pro-
vides a flow diagram summarizing the
region growing algorithm.

FOR EACH SUBIMAGE

[[EAD ORIENTATION VALUES FOR EACH LINE IN SUBWIAGE |

INITIALIZE SEED COORDINATES

P
i
1
|

I
ORIENTATION
VALUE AT
SEED ADDRESS,

#0

NO SEEDS
OETERMINED

COORDINATES
OUTSIDE OF
SUBIMAGE

INCREMENT EDGE COUNTER
FOR CURRENT SEED

(:)——4 PER FONM REGION LINKING FOR CURRENT SUBIMAGE
¥

[_WRIYE TO OUTPUT DATA OF CURRENT SUBIMAGE TO DISC

Figure 3. Detalled flow diagram for
region growing.

The second test is the part of the
algorithm which embodies the computational
definition of a region - any two pixels
belong to the same region if they occur on
the same side of all edge elements whilch
delimit the region. The regions are de-
fined by taking an arbitrary pixel (the
seed) and evaluating every plxel in a
concentric, expanding neighborhood about
the seed as to 1ts locatlion relative to
the determined edge elements. Figure 4
illustrates how this test for 'seed-sided-
ness' 1s conducted. If the distance be-
tween the seed pixel and the current pilxel
is less than the distance between the seed
pixel and the intersection of the line de-
fined by the seed and the current pixel
(SC) and the line defined by the edge
element and its orientation (ES), then the
current pixel 1is on the seed side of the
edge element. The values for the coordl-
nates of the seed pixel (Xs,Y¥s), the
current pixel (Xe,Yc), and the edge el-
ement (Xe,Ye), and the edge orlentation
(Be), are known. The cogrdinates of the
intersection (Xi,Yi) of SC and E® are un-
known. Solving for Xi and Yi involes a
linear system of two equations :

tan® = (Ye-Yi)/(Xe-X1) (1)
(Yi-Ys)/(X1-Xs) = (Yc-¥s)/(Xc~Xs) (2)

The fact that the edge orientation equals
the slope of the line defined by the in-
tersection and the edge element provides
Eq. 1. Since the three points (Xs,¥s),
(Xe,Ye), and (X1,Yi) lie on the same 1line,
they define the same slope, which provides
Eq. 2. Rearranging Eq. 2,

Y1 = (Xi-Xs)(Yec-Ys)/(Xc-Xs)+Y¥s (3)

Substituting Eq. 3 into Eq. 1 and
rearranging,

let a = (Ye-Ys)/(Xe-Xs), then
X1 = (Ye+Ys+aXs-Xe¥tan®)/(a-tan®) (4)

After solving for Xi,Yi, the dis-
tances between (Xs,Y¥s) and (Xc,Ye), and
between (Xs,Y¥s) and (Xi,Y1i) are computed
and compared.__If line segment 3C is
shorter than SI, then the current pixel is
in the same region as that of the seed,
relative to that particular edge.

Regions which are not separated by
edge elements are regarded as regions
restricted in size by the seed spacing
rather than the size of the feature in
which they occur. Therefore, regions are
tested for possible linking after they are
fully grown.

1984 Machine Processing of Remotely Sensed Data Symposium

308




Y (COLUMN)

XsYs (SEED PIXEL}

) .\\
£ \
= \,
x \\ XEYE®
AN (EDGE ELEMENT)
XcYe XY}
{CURRENT PIXEL) '~ {PROJECTED
INTERSECTION)

N\

Figure 4. Geometry of test for
'seed-sidedness’'.

Region Linking. Two adjacent regions
are linked 1f, for all edge elements asso-
clated with each of the two regions, no
edge element intersects the line segment
defined by the two region seeds. This
test 1s performed by allowing one of the
region seeds to serve as a 'seed' and the
other to serve as a 'current' pixel. The
tests for seed-sidedness are performed, as
in the reglon growing. The roles are then
reversed, and the tests are repeated.

The link candidates are the south and
east nelghbors. The process moves first
east, then south. Hence, duplication is
avolded yet all four neighbors are tested
for sultable links. No explicit tests are
performed for the four diagonal neighbors
(i.e., northeast, northwest,...), since no
vector can Intersect a diagonal of a quad-
ralateral without intersecting at least
two of the edges. Consequently, the dia-
gonal nelghbors are linked through the
linking of cardinal elements.

The continuity of the linking can be
disrupted by the occurrence of edge spurs
or false edges. The testing for and stor-
age of forks can be used to overcome the
link breaks caused by spurs and false
edges. A fork 1s a condition which arises
when linking tests are passed for a m:'1-
tiple of neighbors subsequent to a link
test fallure for two regions in the
vacinlity. The storage and processing of
all multiple links would be wasteful and
unnecessary, since not all multiple links
result in forks. If a set of multiple
links which result in a fork is not de-
tected, recorded, and appropriately pro-
cessed, it will result in a break of the
linking series. A break in the linking

serles generates two reglons where only
one exlsts. Thils may or may not cause a
problem, depending on the number of pixels
comprising each reglon and the number
needed to adequately represent the
corresponding feature.

IV. RESULTS AND DISCUSSION

As region growing 1s a step in the
information extraction process, full
testing and evaluation will have to await
the design and encoding of routines for
1l)spectrally (and possibly spatially)
characterizing the reglons, and 2)discri-
minant functions which employ the manner
in which the reglons are characterized.
The edge magnitude and orientation compu-
tation routine and the routine which clips
this EMO 1mage to the edge/non-edge 1image
has been evaluated with simulated data of
varilable signal-to-noise properties and
with actual TM data (Latty, 1984). These
routines have been found to perform quite
well. However, the clipping routine re-
quires an undesirable level of a priori
knowledge of reasonable thresholds for the
local edge magnitude maxima.

Performance of the region growing
algorithm was examined for TM data
obtained November 2, 1982 over north-
eastern North Carolina. Images of the
P-tape data of spectral bands 2 (0.52 -
0.60 um), 3 (0.63 - 0.69 um), and 4 (0.76
- 0.90 um) are provided in Figure 5. The
EMO images for spectral bands 1 (0.45 -
0.52 um), 2, 3, 4, and 7 (2.08 - 2.35 um)
were generated. The EMO images for
spectral bands 2, 3, and 4 are shown in
Figure 6. The brightness of points in
Figure 6 1s proportional to the average
directional contrast of the areas on
either side of the point. The EMO images
of spectral bands 1, 2, 3, 4, and 7 were
used to generate the ENE images for each
of these spectral bands. The ENE images
of bands 2, 3, and 4 are shown in Figure
7. The ENE images of each of the five
bands were used to form the combined ENE
image (Figure 8). The combination of the
ENE images of different spectral bands is
required since earth surface features
exhibit contrast 1n some spectral bands
but not in others. The band combination
approach employed here 1is only one of many
possible means of combining the different
spectral sources of information. Another
approach 1s performing some spectral
transform which results in dimension
reduction (e.g., principle components
transformation, Tassle-Cap transform,...)
on the original spectral data prior to
edge detection. :

The reglon growing 1is considered
successful 1f each region occupiles a
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Figure 5. Thematic Mapper data
obtained over northeastern North Carolina,
November 2,1982: a) band 2 (0,52-0.60 um),
b) band 3 (0.63-0.69 um), ¢c) band 3
(0.76-0.90 um).

Figure 6. Edge magnitude images
generated from images shown in Figure 5
using 7-by-7 matricies of 15 degree
incremental rotations: a) band 2, b) band
3, e band, Y.
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single surface feature. In addition to
the above criterion, the success of region
linking requires that each linked region
contain a sufficient number of pure pixels
to accurately characterize the surface
feature in which it occurs. The perform-
ance of the region growing algorithm is
dependent on the accuracy of the combined
ENE image. If there are edges in the
spectral image which the EMO and subse-
quent ENE generation processes fail to
accurately represent in the combined ENE
image, then regions will grow into neigh-
boring features. Consequently, a single
region will occupy more than one feature.
The region growing does not introduce
factors or parameters which must be ac-
curately estimated by the analyst for each
particular scene, nor which vary within
the processes of the routine. The region
growing routine employs only the data of
the combined ENE and performs with no
direct reference to the spectral data.

The region growing process makes certaln
assumptions about the combined ENE image
in relation to the arrangement of surface
features, and performs in a set and con-
sistent manner based on these assumptions.
Figure 8 illustrates the linked region
image generated from the ENE image of
Figure 7. Comparing Figure 8 with the
original spectral data of Figure 5
provides a qualitative 1dea as to the
performance of the region growing. In
general, the region growing works very
well. It can be seen that the road in the
upper-left area, and the narrow linear
features 1n the center right are poorly
represented. It appears from the EMO
images of Figure 5 and the ENE images of
Figure 6 that the edges of these features
are poorly represented and subsequently
suppressed. Falsely detected edges also
occur and result in abreviated regions.
The generation of more than one region per
feature will not upset the iInformation
extraction process as long as the number
of pixels in each region is sufficient to
accurately represent the feature in which
they occur.

The design of the region growing
algorithm does not require that the edges
in the combined ENE image be continuous
(without gaps). The frequency of detected
edge elements along a true edge need only
be high enough such that the distance be-
tween detected edge elements is less than
the width of the search space. This is an
important performance property of this
region growing approach, since the omis-
slon of edges along an actual edge has
long been a hinderance to scene segmenta-
tion approaches based on edge detection
(Gupta and Wintz, 1973; Robertson, et al.,
19735 Gupta, &t al., 1973).

(c)

Figure 7. Edge/Non-edge images gen-
erated from EMO images shown in Figure 6
using an iterative U-by-L saltatory window
for determining local maxima: a) band 2,
b) band 3, c¢) band 4.
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Figure 8. Combined Edge/Non-edge
image generated through combining the ENE
images of TM bands 1,2,3,4, and 7.

Table 1 shows the percentage of the
image represented by regions equal to or
greater than a series of sizes. With
nearly 80% of the image in regions of 100
pixels or more, the regions should provide
well defined spectral characterizations of
the features which the regions represent.
Wacker (1972) showed that with 40 or more
plxels, features which differ only in co-
variance (i.e., equal means) could be
accurately distinguished. In addition,
many of the remaining 20% of the image
pixels can be accurately identified
through their individual contextual
properties.

Frg

Figure 9. Linked region image
generated through region growing and
subsequent linking on the combined ENE
image of Figure 8.

Table 1. Profile of percentage of
image represented by regions of various
sizes.

Number of Pixels Percent of Number of

in a Region Image Regions
1000 §5.5 % 10
500 5855 1% 18
250 700 % 3
100 79.5 % 58
60 8US1:2% 185

V. SUMMARY AND CONCLUSION

The region growing algorithm pre-
sented demonstrates itself as a promising
tool for information extraction from TM
data and, potentially, other high resolu-
tion systems. The small instantaneous-
-field-of-view (IFOV), sampling frequency,
optical transfer properties, and respon-
sivity of TM results in images which pos-
sess very clear and distinct edges between
adjacent surface features. These edges
and their orientations can be readily
extracted from the spectral data.

Although the occurrence of planar, linear,
and point sources of contrast in the same
image results in some confuslon 1in edge
identification, a sufficient amount of
work has been conducted in edge detection,
line detecion, and point detection to
provide design initiatives for estimating
pixel properties relative to all three
simultaneously. This should greatly
improve edge detection and orientation
estimation. Once the edges are accurately
represented the region growing performs
very well., Whether, or to what degree,
the number of pixels in each region is
adequate for accurately identifying or
describing each region is not presently
known. This will have to await the deve-
lopment of appropriate spectral and
spatial descriptors and discriminant
functions. This work is underway
currently.

Besides offering potentially higher
identification accuracies at higher levels
of detail than are currently achieved with
per-point approaches, there are two addi-
tional advantages in the scene segmenta-
tion appoaches. One of these advantages
is that by identifying a single pixel
within a region, all region members have
been identified. This can provide a large
number of observations for training the
discriminant functions with very little
effort. This is particularly valuable to
industries or efforts which have available
a database of points or small areas of
known geographical location which are
closely monitored. These points could be
used in a highly automated fashion for
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rendering information about the rest of
the scene. The second advantage 1s that
once an area has been identified as to the
type of surface cover, detalled analysis
on a pilxel-by-pixel basls can be performed
for extracting higher level information
regarding the properties of the region or
segments (e.g., areas known to be forests
can be examined for crown closure esti-
mates, specles mix levels, ete.).

Lastly, with the advent and avall-
ability of readily programmable parallel
processors and super-computers, and the
steady decline in hardware costs, the
imagination 1s becoming less inhibited by
processing time concerns.
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