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ABSTRACT

The key to the fixation of carbohydrates and
the determination of the net primary productivity
for global carbon cycle and crop yield is the
green leaf area index (LAL). 1Its determination,
on a global scale, is realistically possible only
with satellite spectral data. A number of trans-
formations, such as reflectance ratios and green=-
ness, have been shown to be related to LAI. 1In
general, these transformations are sensitive to
soil variability and saturate at moderate LAI. A
few of the transformations, such as greenness and
perpendicular vegetation index, minimize sensi-
tivity to soil variability but at the expense of
sensitivity to LAI, This is because these trans-
formations are from a linear space of reflectance
bands, which radiative transport models have
shown to be nonlinearly related to LAI. In addi-
tion, the relationships between these transforma-
tions and LAI were obtained simply by regression
techniques and are not transferable from one data
set to another. The fundamental problem is to
find transformations of spectral data that maxi-
mize the sensitivity to LAI and simultaneously
minimize the sensitivity to soil wvariability,
cultivars, sun angle, etc., and are predictable
from a minimum of input data. It is difficult to
define such an "optimum" transformation. Based
on radiative transport theory of a homogenous
canopy, a new approach to obtain these transfor-
mations is suggested. These transformations show
low sensitivity to soil wvariability, and are
linearly related to LAI with relationships which
are predictable from leaf reflectance, transmit-
tance properties, and canopy reflectance models.
These transformations are obtained without any
ground knowledge of LAIL Results obtained on
winter and spring wheat and corn using only nadir
view data are presented.

I. INTRODUCTION

A renewed interest in the global carbon cy—
cling with particular emphasis on vegetative phy=-
tomass has recently emerged. A number of mecha-
nistic models have been proposed in the last
decade that attempt to incorporate detailed proc-—
esses, such as photosynthesis, respiration, and

growth and necrosis of plant tissues. The per-
formance of these models is generally less than
that of purely empirical models. As pointed out
by Warring (1982), this is due to lack of detail-
ed information on the key processes. A large
volume of data, points to the fact that the key
to the determination of the fixation of carbohy-
drates and hence to the determination of the net
primary productivity is the leaf area index (LAIL),
defined as the one-sided leaf surface area per
unit of ground area. This is the reference base
chosen for comparing the site fertility and
vigor for forest sites (Grier and Running, 1977)
and for crop yield models (Mitchel, 1970). Meas-
urements of leaf area index are very difficult
and tedious, particularly for dense and tall
canopies (presumably the region of most interest
for carbon cycling problems).

The phenomenon of multiple reflections makes
it possible to have much higher reflectance from
multiple layers of leaves than the single leaf re-
flectance. The maximum reflectance, in the near-
infrared, occurs when the number of leaf layers
is about 8 (Gausman, et al., 1976). Hence, the
near—infrared reflectance increases monotonically
as LAI increases. However, in most typical field
situations, LAI is not as high as 8, which makes
canopy reflectance sensitive to soil reflectance.

With the availability of multispectral data,
there is the possibility of minimizing the soil
background effects. A vast array (about 4 dozen)
of reflectance combinations has been proposed to
accomplish this. Many of these are functionally
equivalent (Perry and Lautenschlager, 1984).
Blad et al. (1982), among many others, have con-
cluded that Kauth and Thomas (1976) greenness
index, the ratio of near-infrared reflectance
to red (chlorophyll absorption) reflectance
bands, RVI, are "best" suited of these transfor-
mations to estimate LAIL. The perpendicular vege-—
tation index, PVI, (Richardson and Wiegand, 1977)
and the normalized difference, TVI, (Tucker et
al., 1979) are functionally equivalent to green—
ness index and the band ratios.

All of the work to date relating the leaf
area index to spectral reflectance has been
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empirical. Kanemasu et al. (1977) regressed win-
ter wheat leaf area measurements to the <RVL,
Pollack and Kanemasu (1979) later on wused a
larger data set and stepwise regression and ob-
tained a completely different set of regression
equations. Wiegand et al. (1979) again on winter
wheat data showed that greenness and PVI respond-
ed to changes in LAI with time for LAIDO.,2.

Bauer et al. (1979) acquired spectral and
agronomic data over Kansas, North Dakota, and
South Dakota over a number of years. Linear cor-
relation analysis between LAI and reflectance in
Landsat MSS bands and thematic mapper (IM) bands
indicated similar response to leaf area index.
Kollenkark et al. (1Y82) found that greenness
was strongly related to the leaf area index and
showed that it was more strongly related to soil
cover. They also showed that greenness reached a
maximum, although LAIL continued to increase, sug-
gesting that greenness may be “saturating.”
Daughtry et al. (1983) also showed a similar
relationship for their corn data. Hatfield et al.
(1984) based on this analysis suggest that green-—
ness and leaf area index may be directly related.
Aase and Siddoway (1980) found no significant
general relationship between LAI and PVI or TVI
and the slope of the linear regression lines de-
pended on the initial seeding rate of their
plots. Blad et al. (1983) have suggested shadow
effects as a possible cause of this lack of rela-
tionship, which effects greenness a lot less than
PVI and TVI.

II. THEORY

This brief overview of the work relating LAI
to canopy reflectance is based on empirical re-
gression analysis and is not necessarily trans-—
ferable from one data set to another. Tucker et
al. (1979) earlier have observed that these trans-
formation indices respond asymptotically to LAI
and suggested the need to reevaluate the data
in terms of an index that responds linearly to
LAI. Linear transformations permit one to employ
an extensive body of mathematical techniques to
develop "best” possible combination of these
linear relationships to estimate leaf area index.
The Allen and Richardson (1968) canopy reflec-
tance model predicted the gemeral shape of LAI
versus canopy reflectance. The relationship in
the visible is logarithmic, asymptotically reach-
ing a constant value for LAI>]l and increasingly
dominated by soil reflectance for decreasing LAI.
In the infrared, the curvilinear relationship is
always affected by soil reflectance up to an LAI
of about 8.0. In the last decade a number of
canopy reflectance models of varying complexity
have become available. A review of these models
has been reported by Smith (1983).

Three of these models, Suits (1972), SAIL
(1981), and CUPID (1979), have been subjected to
more rigorous testing and it has been shown that
the SAIL model is "best"” im performance while
requiring the least input information (Badhwar,
1984).

These models, based on sound physical principals
of radiative transport theory (Chandarshekar,
1960) provide a quantitative way to develop trans-—
formations of reflectance data that are linear in
leaf area index and minimally sensitive to soil
background effects. This approach is in marked
contrast to the regression approach in that the
origin of coefficients can be directly traced
to leaf component properties and limitation of
their validity investigated. It does not require
extensive data sets of canopy reflectance and
leaf area index (tedious to obtain in best of
circumstances). In the next section we briefly
review the SAIL model and our approach to obtain-—
ing LAI from spectral data.

The basic physical mechanism of the spectral
radiance of a canopy is the scattering of the
electromagnetic radiation by the canopy elements
(leaves, stems, etc.). These elements are charac-
terized by their reflectance, p(k), and transmit-
tance, T(A), properties, which can be measured in
a laboratory setup, and leaf area. Suits (1972)
idealized the canopy geometry by replacing each
plant component with three orthogonal projections
of that component and assigning them the same hem~
ispherical spectral properties as the actual com=
ponents. This uniform canopy model also assumes
that the canopy could be stratified into layers,
infinite in horizontal extent, in which plant com=
ponents are randomly distributed and homogenously
mixed. The location of the layers, above the
soil background are so chosen as to logically
quantize the vertical distribution of the compo-
nents. This 1idealization with the additional
assumption of azimuthal isotropy, then permits
the calculations of five parameters in Duntley's
(1942) differential equation, the solution of
which then provides the upwelling and downwelling
diffuse flux density for sun and observer orien-
tation. Verhoeff and Bunnik (1981) extended this
model by removing the constraint that the scatter-
ing elements in a given layer had fixed orienta-
tion, as is in fact observed in nature. Evalua-
tion of this model, called a SAIL (Scattering by
Arbitrarily Inclined Leaves) on corn and soybean
crops shows excellent agreement for nadir view ob-—
servation. In brief, the model gives an implicit
relation that for nadir view and Sun zenith angle
of es from nadir, the canopy reflectance, R", is
a function, FA, at observed wavelength, A, of the
form

RM(8,) = F (1AL, o*, 7, o}, £(Bp), nM) (D)
where f(61) is the leaf 1inclination distribu-
tion [and can be_described by a Beta distribution,
the mean angle, 63, and skewness, €1, of the dis-
tribution (Horie and Udagawa, 1971)] and nt is
the ratio of the diffuse—-to-direct solar flux.
Test indiﬁates that for clear observing condi-
tions, R (es) is very weakly dependent on n”.
Thus, for a given LAIL, the canog{ rﬁfle tance
depends on laboratory measured p", T", Pg» and
£(61,). One thus needs five independent measure-
ments to estimate the leaf area index. Because of
the high degree of correlation between individual
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band reflectances (Kauth and Thomas, 1976),
there are no more than three independent reflec—
tance bands in T™ data. Thus, the model is not
invertable, even in principle, without additional
ancillary data. However, the canopy component
reflectance and transmittance a few days after
emergence and before senescence sets in, for a
given species is relatively constant. A number
of techniques exist to map species. With this
reasonable assumption, one needs only three inde-
pendent measurements of R* The function F* is
different for different wavelength bands as has
already been noted. The problem of the estima-
tion of LAI from reflectance can thus be stated
as:

find linear or nonlinear combinations of RA
(acquired at a given Sun zenith angle) that (1)
give maximum sensitivity to changes in LAI and
simultaneously, (2) are minimally sensitive to
changing background reflectance pg, and (3)
leaf inclination angle distribution £(6y), that
changes among cultivars and changing planting
configurations.

In this preliminary investigation, we have
concentrated on linear transformation of LAI. As
will be seen, with the current precision (D*20%)
in ground measurements of LAI, this is sufficient.
This task will be facilitated if an analytic

representation of F* in equation (l) can be ob-

tained.

Figure 1 is the plot of the model calculated
(nadir view) corn canopy reflectance in MSS bands.
The input to the model were the laboratory meas—
ured (px), (tx), (nx), and measured leaf incli-
nation angle distribution. Points were generated
at four different sun angles and one soil type.
The calculated reflectance at various wavelengths
was integrated over the Landsat MSS bands. Plot
(la) is in the chlorophyll band and plot (1b) is
in the infrared. As expected the form of these
curves appears to be logarithmic. The solid
lines are fits to the model generated data by
equations of the form:

Ry = RS + (p;RDe CLMAT

Ry = RS + (pp—R)e ~ColAL (2)
Ry = p3 + (R§-py)(1-e O34T

Ry =04 + (R2‘04)(1'€_04LAI)

where, p's are the soil reflectanges and RS are
the asymptotic (LAI+«) canopy reflectance. RS
do not depend on p's.

The Rz—square of these fits exceeds 0.95.
Data on canopy reflectance and LAI taken by Bauer
et al. (1982) confirms that the model calculated
values of the coefficients in equation (2) in
these bands are, within errors, the same as cal-
culated by fitting real data on LAI and corn
canopy reflectance The coefficients Ci contain
in them information about the 1leaf inclination
angle. Wiegand et al. (1979) have noted that

they will change by small amounts among culti-
vars and planting configuration.
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Figure 1. A plot of the SAIL model calcu-
lated reflectance in MSS bands 2 and 4 as a
function of LAI for a nadir viewed corn canopy.
The solid curves are the fits to the data (stars)
by equations of the form (2). The input param-
eters are given in Equation (1).

Equation (2) makes it explicit that the re-
lation R4/R2 with LAI is nonlinear and depends
explicitly on the soil type. Even though the
relative relationship between p4 and pp is fairly
stable for a large number of soil types (and
varying soil moisture), the soil term does not
cancel out. Clearly, R4/R2 transformation does
not minimize soil background effects. Greenness
increases as the crop develops from its initial
value on the plane of soils to a maximum that,
for a given crop type, is the same regardless of
the soil type. Figure 2 shows the same data as
in Figure 1, but generated for 12 different soil
types at a given sun zenith angle--each curve
represeating a different soil type. The greenness
direction by definition is perpendicular to the
soil direction. This figure demonstrates that
while greenness minimizes the effect of soil
variability, it does so at the expense of sensi-
tivity to LAIL.
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Figure 2(a). A cross plot of the data in Fig-
ure 1, but calculated for 12 different soil types
(IC). The soil and greenness directions are
marked. Note direction of maximum LAI sensitiv-
ity is not along greenness direction.
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Figure 2(b). The same plot as Figure 2(a) but
in the transformed variable of equation (3). Note
the direction of LAI sensitivity is almost linear
and nearly orthogonal to the soil direction.

Assuming a fixed crop cultivar, Equation (2)
can be inverted.

vy = =(1/C)[#n(R;=R}) - &n(p-R])]

vy = =(1/Cy) [4n(Ry=R3) = &n(py=R3)]
y3 = =(1/C3) [4n(R§-R3) - 2n(R§-p3)] (34)
y, = =(1/C,) [n(R§-R,) = 2n(RG-p4)]

These variables, by definition, are linear in
leaf area index. Figure 2, in transformed space
of y2 and y4, shows that the variability in the
soil direction is nearly orthogonal to the chang-
ing leaf area index.

1f we now take linear combination of y's,
they are linearly proportional to leaf area in-
dex. The soil variability is in additive terms.

A possible way of finding the "best" linear com-
bination of y's would be the principal component
analysis. Such an analysis offers the advantage
that it does not depend on the additive term. In
this paper, it is the principal component analy-
sis in y's which was used. Note, by this choice,
the line of soil in reflectance space will be a
line in transformed space.

The principal component analysis will provide
us with a linear combination of y's that is maxi-
mally sensitive to the chauges in LAI. However,
the effect of the changing background reflectance
is not considered in this analysis. An alterna-
tive solution to finding the "best” linear com-—
bination of y's would be to find T(y)=)tjyj such
that corr (T(y), LAI), the correlation between
T(y) and LAI, is high and corr (T(y), Soil) is
low. Or more specifically, we want to find
T(y) = )tiyj such that corr (T(y), LAIL) is max-
mized subject to |corr (T(y), Soil)|<e for some
small €>0 and )t§=l.

This alternative technique will perhaps give
us a linear combination of the y's that is highly
correlated to LAI and simultaneously insensitive
to the soil background effect.

IITI. DATA SETS USED

Three extensive sets of Exotech 100-A reflec-
tance and leaf area index values acquired over
experimental plots of wheat in Arizona (1978-80,
Jackson et al.), wheat in South Dakota (Best,
1982), and corn at LARS-Purdue University (1979-
80, Bauer et al.) were used in this study. These
data sets contain leaf area index values ranging
from 0 to 7. It was found that some measurement
errors exist in the leaf area index value. The
errors were smaller for low leaf area index
values and larger for high leaf area index values
(C.V. = 20%). The corresponding MMR reflectance
data are available for analysis as well.

IV. DATA ANALYSIS AND RESULTS

Using the SAIL model, the corn canopy reflec-
tance values were generated for four different
sun angles and one soil type. The coefficients
in the nonlinear transformations (3) were first
obtained by fitting equation (2) to the model
generated data points. Since the LARS data set
contains both the reflectance and leaf area index
values for corn, the fitting was done to the real
data as well. The coefficients obtained from the
model-based data were found to be essentially the
same as those obtained using real data. This in—
dicates that we can use the model to estimate the
coefficients in equation (3) which are linear in
LAI.

The first principal component of y's 1is the
linear combination of y's which corresponds to
the direction of maximum variance in the sample
scatter configuration. The changes in y's are,
by definition, linearly related to the changes in
leaf area index. Therefore, the first principal
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component should demonstrate the “best" linear
relationship with leaf area index. Using each of
the three data sets, the first principal compo-
nent was found and plotted against leaf area in—
dex as shown in Figure 3. The straight lines in
the plots are the regression lines obtained by
regressing leaf area index on the first principal
component. Table 1 shows the percentage of vari-
ance explained by the first principal component
and the R? between leaf area index and the first
principal component for eaclii of the three data
sets.

Multiple regressions of leaf arza index on
the y's and on the raw channel values R's and
simple regressions on RVI and greenness were also
performed for these three data sets. The purpose
of these regression analyses is to compare the
performance of their first principal components.
The R? values are presented in Table 1.

TABLE 1.
Wheat Wheat Corn

(Arizona) |{(South Dakota)|(Indiana)
Number of
Data Points 61 54 46
% Variance
explained 76.82 86. 66 70. 25
(PC1)
R%~Regres—
sion (on 0.818 0. 836 0.740
PCl)
R4-Regres~
sion 0.873 0. 845 0. 826
(Y1se0,¥4)
R%~Regres—
sion 0. 858 0.797 0.784
(R1,.. ,R4)
R%-Regres—
sion (on 0.818 0.732 0.770
Greenness)
R“-Regres=—
sion (on 0.723 0.824 0.790
R4/R2) |

It is necessary to point out that the prin-
cipal component of y's, which is linearly related
to leaf area index, can be obtained without the
knowledge of leaf area index and, hence, served
as a predictor for leaf area index. Whereas,
multiple regressions, though showed slightly
better R? values, do require the knowledge of
leaf area index and are not transferable from
one data set to another. They are, besides other
difficulties mentioned earlier, therefore less
desirable.

The principal component analysis technique
gives us a nonlinear combination of the R's that
is maximally sensitive to the changes in LAL
However, at present, we have not checked to see
if this direction is minimally sensitive to the
background reflectance. Figure 2, however, shows
that this may, in fact, be so. Further research
in finding the direction that will achieve both

simultaneously is needed.
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Figure 3. A plot of the first principal
component of y's against the observed LAI for
three crop types.

V. ACKNOWLEDGEMENT

Drs. Forrest Hall, Richard Heydorn, and Raj
Chhikara contributed in numerous ways in clarify-
ing a number of concepts. Their support is much
appreciated. Part of this work was supported by

1984 Machine Processing of Remotely Sensed Data Symposium

337




the Fundamental Research Program from the Goddard
Space Flight Center (GSFC). We would like to
thank Dr. Robert Murphy of GSFC for this support.

VI. REFERENCES

Aase, J.K. and F.H. Siddoway, 1980: Agrom. J.,
72:149-152.

Allen, W.A. and A.J. Richardson, 1968: J. Optical
Soc. Amer., 58:1023-1028.,

Badhwar, G.D., 1984: Comparative Study of Radi-
ative Transport Models~-Fundamental Research Work-
shop, Fort Collins, Colorado, Jan. 1984.

Bauer, M.E., L.L. Biehl, C.S.T. Daughtry, B.F.
Robinson, and E.R. Stoner, 1979: Final Report,
Vol. I (LARS) SR-P9-00410,

Best, R.G,, 1983: AgRISTARS Report SR-03-0441l.

Blad, B.L., J.M. Norman, and B.R. Gardner, 1982:
Center for Agricultural Meteorology and Clima-
tology Progress Report 82-2, Univ. of Nebraska,
Lincoln, Nebraska.

Blad, B.L., J.M. Norman, and B.R. Gardner, 1983:
CA MAC Progress Report 83-5 (SR-83-04429).

Chandrasekhar, S., 1960:
Dover, New York.

Radiative Transfer,

Daughtry, C.S.T., K.P. Gallo, and M.E. Bauer,
1983: Agron. J., 75:527-53L.

Duntley, S.Q., 1942: J. Optical Soc. Am., 32:61-
70.

Gausman, H.W., R.R. Rodriguez, and A.J. Richard-
son, 1976: Infinite Reflectance of Dead Compared
to Live Vegetation. Agron. J., 68:295-296.

Grier, C.C., 1977: Ecology 58(4);893-899.

Hatfield, J.L., G. Asrar, and E.T. Kanemasu,
1984: Remote Sensing of Envir., 14:65-75.

Horie, T. and T. Udagawa, 1971; Bull. Nat. Agr.
Sci. A, 18:1~56.

Jackson, R.D., R.J. Pinter, R.J. Reginato, and
S.B., Idso, AgRISTARS Tech. Rept. SR-M2-04341,

Kanemasu, E.T., J.L. Heilman, J.O. Bagley, and
W.L. Powers, 1977: Using LANDSAT Data to Esti-
mate Evapotranspiration of Winter Wheat. Envi-

ronmental Mgt., 1:515-520.

Kauth, R.J. and G.S. Thomas, 1976: Proc. Symp.
Machine Proc. Remote Sensing Data, Purdue Univ.,
West Lafayette, Indiana, pp. 4641-4651.

Kollenkark, J.C., C.S.T., Daughtry, M.E. Bauer,
and T.L. Houseley, 1982: Agron. J., 74:752-758,

Mitchell, R.L,, 1970: Crop Growth and Culture,
Iowa State, Univ. Press, Ames 349 pp.

Norman, J.ok., 979: AUsE  monograpin 2 (B.J.
Barfield and J.F. Gerber, eds.), St. uJoseph, MI,
PP249-277.

Perry, C.R. and L.F. Lautenschlager, 1984: Remote
Sensing of Envir., 14:169-182,

Pollack, R.B. and E.T. Kanemasu, 1979: Remote
Sensing of Envir., 8:307-312. -

Richardson, A.J. and C.J. Wiegand, 1977: Photog.
Engr. and Remote Sensing, 43:1541-1552,

Smith, J.A., 1984:
Vol. I.

Manual of Remote Sensing,

Suits, G.H., 1972:
2:117-125.

Remote Sensing of Envir.,

Tucker, C.J., J.H. Elgian, J.E. McMurtrey, III,
and C.J. Fan, 19 : Remote Sensing of Envir., 8:
237-248.

Verhoeff, W. and N.J.J. Bunnik, 1981: Proceedings
of the Int. Colloquium on Signatures of Remotely
Sensed Objects, Avignon, France, pp. 273-290.

Warring, R.H., 1982:

Advance Ecolog. Research,
Vol. 10. )

Wiegand, C, L., A.J. Richardson, and E.T. Kanemasu,
1979: Agron. J., 71:336-342.

AUTHOR BIOGRAPHICAL DATA

Gautam D. Badhwar. Received B.S. — 1959 in
Physics from Agra University; received Ph.D. =
1967 in Physics from University of Rochester.
Dr. Badhwar has worked as a Research Assistant
at the Tata Institute of Fundamental Research

.in Bombay India; as an Assistant Professor of

Physics at the University of Rochester; as a
Senior National Academy of Science Fellow and
as a Physicist in the Space Physics Division of
NASA/JSC in experimental and theoretical research
in cosmic radiation; and as a Physicist in the
Earth Resources Research Division of NASA/JSC
doing research in agricultural remote sensing.

Sylvia S, Shen. Received the B.S. degree in
mathematics from National Taiwan University in
1972 and the M.S. and Ph.D. degrees in mathemati-
cal statistics from Purdue University in 1974 and
1977, respectively. She was an Assistant Profes-
sor in the Mathematics Department at Northwestern
University until June 1979. Since that time, she
has been with Lockheed Engineering and Management
Services Company where she is a Principal Scien-
tist in the Scientific Systems Department. Her
current work includes development and evaluation
of remote sensing and statistical techniques for
estimating biophysical characteristics of forest
canopies using LANDSAT imagery.

1984 Machine Processing of Remotely Sensed Data Symposium

338




