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ABSTRACT

The problem of detecting changes in boundaries while
ignoring simple spectral changes is introduced, and a
general approach to this problem is examined in detail.
Two methods of boundary change detection are explained
and compared in terms of accuracy and computational
requirements.

I. OBJECTIVE AND APPLICATIONS

The specific objective of this study is to develop a
method of detecting the creation or elimination of borders
in a scene from one time to another while ignoring simple
spectral changes (those not involving borders) which may
occur. Examples of valid changes in this context are:

* an object which is present at one time and not at the next

* an object which has grown or changed in shape

¢ an object which has moved.

Examples of changes which are to be ignored are:

* an object increasing or decreasing in brightness relative to
its background

* an object changing in spectral characteristics relative to
its background.

Figure 1 illustrates these situations and the proper outputs

of a boundary change detection algorithm.

The uses for such a technique can be best illustrated by
enumerating specific applications. These include:

* detection of new roads in agricultural areas where there is
an abundance of uninformative spectral variation (caused
by crop rotation, seasonal vegetation changes, etc.)

¢ detection of new buildings

* military surveillance

* observation of glacier movement or snow melt

* any other situation in which general change detection is
used where simple spectral changes are not of interest.

II. GENERAL APPROACH

Before we proceed, a few contextual definitions are in
order to prevent ambiguity. A scene is the actual area being
sensed to produce an image, which is the data obtained
from sensing. The image will have spatial and spectral
characteristics analogous to those in the scene. An object is
a subarea of a scene having uniquely distinguishing spectral
(spectral signature) and spatial (size, shape, location)
characteristics, while a region is a similarly defined
subsection of the image. Therefore, every distinct object in
the scene will be represented as a distinct region in the
image.

A border is the one-dimensional space separating two
contiguous objects in a scene, and a boundary is a one-
dimensional space in an image separating two regions.
Furthermore, to allow us to make stronger statements
about the accuracy and precision of boundary locating
techniques, we will assume (somewhat arbitrarily) that the
separation of two objects occurs along a curve having the
property that all of its points are local maxima of the
magnitude of the spatial gradient of the scene in the
direction d orthogonal to the line t tangent to the curve at
that point x,. This is illustrated in the following diagram:

Scene g(x, A)

(where A is wavelength)

having spatial gradient gx
X

2
object 2

object 1

{ Border, defined as x:

Ifgx(Xb,)\)d)\|>|fg,(Xb—cd A) dA |

~-8=c=§, where| 6| >0
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Image, Time 1

Image, Time 2

Properly Indicated
Boundary Changes

a. Presence/absence of objects from one time to the other
z z
X X
b. Growth of an object

z
<> <D,
c. Movement of an object
X L y
z
(no indication)
d. Simple spectral changes of objects

w, X, y and z are unique spectral vectors

c is a nonnegative scalar constant

Figure 1. Examples of spectral changes and their proper boundary change indications.
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While this leads to a reasonable border, it should be
realized that other reasonable borders can be obtained
using a different rule.

A boundary differential is a boundary with the added
dimension of intensity, which is determined by the
difference in or ratio of intensities between the regions it
separates. An edge is an approximation to the spatial
gradient having three dimensions—Ilength, width, and
intensity. In the classification procedures to be discussed, a
cluster refers to a group of contiguous points having a
single spectral vector, whereas a class is a set of spectral
vectors having a single nominal vector typifying the spectral
characteristics of the points and regions which “belong” to
that class. Finally, the notation will be as follows: k and 1
are spatial coordinates in an image, n is the spectral band
number, N is the number of spectral bands in an image,
and each vector, matrix, and tensor will be denoted by a
boldface letter with a subscript (e.g., i,j,1,2) to indicate the
scene to which it corresponds. The significance of these
terms and definitions should become clearer as the
discussion progresses.

The general approach to boundary change detection
amounts to indicating the boundaries, B; and B,, in the
images from both times, I, and L, and then performing the
equivalent of an exclusive OR (XORing). These two steps
will now be detailed.

A. INDICATION OF BOUNDARIES

There are two qualities important in a boundary: its
accuracy in approximating the border of two objects, and
its precision in doing so. Two methods of boundary
indication and their relative accuracies and precisions will
now be discussed.

1. Gradient Methods. By convolving an image with a
function approximating a gradient and taking its
magnitude, an edge is obtained. A single edge E(k,1) may
be formed from a function of the edges in the N spectral
bands:

E(k,1) = f [E(kL1), E(k,L2), ..., Ek]LN)],

where f might be the norm, the sum, or the maximum over
N bands.

Now, assuming that the images are accurate in their
representation of the scene, the values of E(k,]) will be
relatively high not only on the border, but within a distance
Aw of the border. This is principally due to three factors:
the size of the convolution function used to approximate
the gradient, the effect of the sensor MTF, and the fact that
the transition between “objects” is not always distinct.

Thus, while it may be said with certainty that the border
will exist solely within areas where E(k,]) is relatively high

and that the boundary should be located in such an area, it
is difficult to actually calculate with precision where the
boundary should be located to yield the highest accuracy.
Instead, it is much simpler to determine a “general
boundary” B(k,l) which can be regarded as a two-
dimensional approximation to B(k,l), by thresholding
E(k,]) as follows:

_ § TRUE, if E(k,l) =e;
B(GD = U FALSE, if E(k.)) <e,

where e is chosen to maximize the number of boundary
points included in B (maximizing accuracy) while
minimizing the number of “TRUE” values in 8 which do
not correspond to boundary points (maximizing precision).
In actual images, it is virtually impossible to choose a
threshold such that S(k,]) will correspond exactly, or even
closely, to B(k,l) for all k,I. In practical situations, if high
accuracy is desired, the precision to which a boundary will
be specified using gradient methods will be relatively low,
and if high precision is desired, it will not be achieved
without gross inaccuracy.

2. C(lassification. The idea behind classification is to
isolate regions and reduce them into clusters representing
distinct objects. An ideal classifier will create exactly one
cluster per distinct region in the image. The spectral value
of each cluster should contain the essential distinguishing
spectral characteristics of the associated region. The
classified image C, at least in this context, will consist solely
of clusters, each having a single spectral value determined
by the spectral class to which the cluster belongs. Assuming
that every object in the scene is adequately represented both
spatially and spectrally in the classified image, it may be
said that no essential information is lost in the classification
process, or that the classifier is, loosely speaking, lossless.
In this study, losslessness will be an important virtue of an
ideal classifier.

To illustrate classification, consider a scene containing,
among other objects, a field of corn with a gravel road
through it. A good classifier will create at least two classes,
one for corn and one for gravel, and using a rule it will
decide which points belong to the class of corn and which
to the class of gravel. The resulting classified image will
contain one cluster representing the corn field and one
cluster representing the road. The spectral values of these
clusters should be typical of “corn” and of “gravel,”
respectively.

The choice of a boundary in a classified image is
immediately obvious. The only reasonable assignment of
boundaries is along the curves separating the clusters. In a
digitized image, boundary pixels could be assigned as
follows:
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TRUE, if both of the following conditions

hold:

—C(k,l,n) # C(k+1,l,n), C(k-1,,n),
C(k,I+1,n) or C(k,I-1,n)

B(k,]) = for all n, and

—the size of the cluster to which
C(k,]) belongs is larger than its
neighboring cluster

FALSE, otherwise.

It should be noted that the second condition of B(k,l) being
true ensures single-pixel-wide connected boundaries, and
that other conditions may be used instead. In the following
classification techniques, the precision of the boundaries
will be limited only to the size of the pixels, while the
accuracy will be dependent on the particular classifier used.

The boundary differential Y can be computed at the
boundary pixels as a function f of the differences between
C(k,I,n) and a different neighbor C(u,v,n) in all spectral
bands as such:

f{[C(k,L1) - C(u,v,1)], [C(k,L,2)

_ - Cw,v,2), . . ., [C(k,,N) ~C(u,v,N)]},
kD) = if B(k,]) = TRUE
0, if B(k,l) = FALSE

The boundary differential will be constant along the
boundary between any two clusters, and it will represent
the nominal spectral difference between contiguous regions
in the original image. Using our previous example and
assuming that the cluster of “corn” is larger than that of
“gravel,” the boundary differential will be located along the
pixels of the “corn” cluster adjacent to the “gravel” cluster
and will be described as:

Y(k) = { flcorn-gravel] if B(k,]) = TRUE

’ o, if B(k,l) = FALSE
where corn and gravel are the N-dimensional class values of
corn and gravel as determined by the classifier, and f is a
function of those vectors.

Two methods of unsupervised classification are
particularly appealing in the context of boundary change
detection: a global histogram classifier, or GHC, which
works from an N-dimensional histogram, and a region
growing classifier, or RGC, which operates directly on the
N-band image.

a. Global Histogram Classification. The salient
differences between the GHC and the RGC can be
illustrated by use of our previous example of the
cornfield and the road. The GHC would look at the
histogram of the whole scene and subdivide it into
several distinct classes according to the histogram
statistics. Each class will have a nominal spectral

vector, again determined by the statistics. Among these
classes we would hope to find two whose spectral
characteristics were similar to those of the corn and the
gravel in our field. If there were several fields of corn
and several gravel roads, an ideal GHC would create
one class for all corn and one class for all gravel within
the scene having the nominal values corn and gravel,
respectively. Each cluster of corn would consist of
pixels having the spectral value corn, and each cluster
of gravel would consist of gravel-valued pixels. Now, if
our cornfield is “typical” corn and if our road is made
of “typical” gravel, the representation will be accurate.
But what if, say, our field of corn is not “typical,” that
for some reason it is distinctly different in spectral
characteristics than the rest of the corn in the scene. A
GHC would do one of the following:
* create a new class for our particular region of “corn”
(which would be good),
e classify the region as typical corn and assign the
cluster the value corn (which would be bad), or,
e classify it as something else and assign it a class that
does not reflect its spectral characteristics well (even
Worse).

The tradeoff involved in a GHC, insofar as it
relates to our purposes, is between the number of
classes created and the spectral accuracies to which the
regions are represented by their clusters. In general, the
more classes created, the higher the spectral accuracy,
but as an undesirable side effect, there will be
superfluous clusters created. With remotely sensed data,
it is virtually impossible for a GHC to create exactly
one cluster per object, and even if this were possible,
the spectral accuracy would not necessarily be high,
since individual regions are not best described by
global spectral characteristics, at least in our context.
Thus, even an ideal GHC cannot be regarded as
lossless in general.

As far a boundary accuracy is concerned, since the
GHC does not use spatial data, it cannot be expected
to “know” where the gradients are high, and as a
result, the boundaries created do not always
correspond to the points of maximum gradient in the
image. However, when the spectral characteristics
assigned to two adjacent clusters are accurate, the
boundary usually will be accurately, or at least
reasonably, located. The main problem with the
accuracy of the GHC is that, depending on the number
of classes it produces, it may create superfluous
clusters, fail to create clusters for some distinct regions,
or both. Thus, superfluous boundaries may be created,
and some borders may not be represented by
boundaries if no cluster has been created for the object
in the classified image. In general, the boundaries
created by a GHC cannot be regarded as accurate
representations of borders and, furthermore, even if the
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boundaries were spatially accurate, the lack of spectral
accuracy will lead to inaccurate boundary differentials.

b. Region Growing Classification. Some of the
aforementioned problems with the GHC are avoided
when using a RGC. Consider again our cornfield. An
ideal RGC will create exactly one class and one cluster
for each distinct region. Since each class is derived from
a single region, the cluster representing it can be expected
to have accurate spectral characteristics. Thus, the cluster
of “corn” representing our particular region of “corn”
and the region itself will be very similar in spectral
characteristics. This will be true regardless of global
spectral characteristics. Each cornfield and each gravel
road in the scene will have exactly one cluster with
spectral characteristics representative of that particular
field or road. In general, it is possible for a RGC to be
lossless.

The fact that in an ideal RGC there is a one-to-one
correspondence between distinct regions, classes, and
clusters gives a RGC two fundamental advantages over a
GHC in our context: first, there will be one-to-one
correspondence between boundaries and borders in the
scene, allowing a much greater potential for spatial
accuracy and, secondly, since each region and its cluster
will have a unique class, the potential for spectral
accuracy is much higher. These advantages make a RGC
more attractive in terms of our objective, the detection of
changes in boundaries.

B. XORing

Having indicated the boundaries in both I; and I, the
general boundary change detection scheme is as follows. If
in I there is a boundary which is not present in I, then a
boundary change has occurred. If the boundary is present
in both Ii and I, then, although there might have been
spectral changes in the regions involved, the boundary
between them remained invariate and therefore no
boundary change was involved and there will be no
boundary change indication. The process by which
boundary changes are indicated is seen to be an exclusive
OR of the boundaries in I; with those in I; (refer back to
Figure 1 for examples).

Unfortunately, the problem of XORing boundaries is
not as trivial as it might seem, especially when the images
are Thematic Mapper (TM) data. The first obstacle to
confront is intertemporal, and even interband,
misregistration. A prerequisite to satisfactory performance
of any type of XOR requires that the two images be
registered correctly, i.e., that each pixel in each band and
each time correspond to exactly the same spatial
coordinates in the scene. If I; and I, aren’t correctly
registered, the boundaries of an object present in both
scenes will differ, and the algorithm will indicate a change

in boundaries. Another problem especially apparent in
Landsat images is that one image may be slightly warped
compared to another. In this case, it is usually possible to
register a portion of the images correctly while maintaining
reasonably good, though not perfect, registration in the rest
of the image. Resampling one image using control points
established by the other image (“warping” or “rubber
sheeting”) can further reduce inaccuracy in registration, but
this is a complicated and computationally inefficient
process. Furthermore, the establishment of control points is
difficult without human intervention. Even with rather
sophisticated techniques, anomalies will still exist, though
they will most likely be limited in size to a fraction of a
pixel.

To compute an XOR, we obtain boundaries from the
two times, B, and B,. The boundaries indicated for a given
object present in both times can be expected to differ
slightly from one another both spatially and spectrally. The
spatial difference (assuming it is small) can be attributed to
misregistration and to the operation of the classifier or to
the inherent inaccuracies in a general boundary. Also, any
changes in illumination or spectral characteristics of either
the background or the object may lead to slightly different
boundaries. Thus, it is to be expected that the object’s
boundaries will not overlap perfectly from I; to L. If an
XOR were performed for the boundaries of the object in
both scenes, the cancellation would be imperfect and there
would be a broken edge as an unwanted remainder. To
remedy this, a neighborhood XOR could be used as such:
Assuming k,l is a boundary pixel in I, if there are any
boundary pixels within a specified neighborhood around k]
in I, they are considered part of the edge of a common
object and are cancelled. The larger the neighborhood, the
more complete the cancellation. But the larger the
neighborhood, the higher the chances of the boundary
points of one object being cancelled out by the boundary
points of a different object, or of a valid boundary point in
one time becoming cancelled by a mistakenly indicated
boundary point in the other time.

This leads to the development of a technique by which
an object is assigned only one boundary whether it is
present in either or both times, as such:
¢ Bi(k,)) = Bi(k,]) = TRUE, if the boundary is present in
both times,

* Bi(k,)) = Bj(k,]) = FALSE, if the boundary is present in
neither time,

* Bi(k,]) = TRUE and Bj(k,l) = FALSE if the boundary is
present at time i and not at time j.

Having defined boundaries thusly, XORing is a
much more straightforward procedure.
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III. METHODS

Two methods of boundary change detection will now
be presented, one which uses gradient operators and
difference classification, and another which uses bitemporal
classification. Both of these methods represent boundaries
in the advantageous fashion described above, though they
are quite different in their approaches.

A. METHOD A

As discussed earlier, the general boundaries obtained
from gradient methods are unsatisfying in terms of
accuracy and precision. Furthermore, when using an XOR
process general boundaries tend to be especially intractable
since they are spatially two-dimensional and may be quite
different in both times. Thus, general boundaries do not
seem to lend themselves readily to our purpose. However,
there is an important simplification which may be made.
First, it should be noted that for any boundary change to
occur, there must be a corresponding spectral change. The
boundaries that have changed will be a subset of the
boundaries of the regions undergoing spectral change. All
other boundaries are not of interest. Therefore, we may
restrict our attention to the boundaries of the regions
having spectral changes. These boundaries may be precisely
determined by classifying the difference D between I, and
LI,. Thus, the XOR need only be performed along the
boundaries of the classified difference image, S. This is
equivalent to projecting E; and E, onto the spatially single-
dimensional boundary space and then XORing this
projection. The method proceeds in the following steps:

1. Preprocessing. First, I, and I, are registered to within
one pixel of each other. Then their intensities are adjusted
such that the standard deviations of their histograms are
identical. This accounts for the difference in illumination
between scenes.

2. Edge Creation. E, and E, are created from I, and I, as
described in ILA.1.

3. Image Differencing. The images from the two times are
differenced on a pixel-by-pixel basis in each band, and the
absolute value of those differences is taken. This difference
image, D, will have N bands.

4. Difference Classification. The difference image D is
classified to produce S using any one of a variety of
techniques:

a. Thresholding. The magnitudes of the spectral
vectors in D may be taken and then thresholded. The
result will be a classified image with two classes, one
for regions in which spectral change has occurred, and
one for regions in which no spectral change has
occurred. Due to the simplicity of this technique,

anomalies can arise in the presence of certain complex
spectral changes. These will be explained in the
following section.

b. Global Histogram Classification. A GHC
elaborates upon thresholding by making it a
multispectral process. It is desired that one class be
created for every type of spectral change greater than a
certain magnitude. Consider our cornfield once again.
Assume that in the first sensing time (I:), there was no
road and that the field was not of corn, but of squash.
There would be two pertinent difference vectors, s¢ (the
N-band difference between squash and corn) and sg
(the difference between squash and gravel). The
magnitudes of both of these vectors will be relatively
high, though they will be markedly different. Using a
simple thresholding procedure as in the preceding
section, no boundary would be detected since the
magnitude of both sc and sg will surpass the threshold
at all points and, therefore, there would be no
boundary for the difference between the road and the
squash. Using a GHC, this problem could be avoided
by creating separate classes for both of the difference
vectors, sc and sg.

c¢. Region Growing Classification. Although a GHC
will yield good results in general, a RGC will allow
better classification of differences of marginal
magnitudes since there will be less likelihood that the
region will be broken up.

5. Boundary Indication. The boundaries of the classified
difference image are determined as prescribed in I1.A.2.

6. XOR Decision Processes. The final step in this method
is to project E; and E; onto the boundaries and then to
compare these projections. Since the values of E; and E,
are not binary, a decision process somewhat more
sophisticated than an XOR must be used. An example of
such a process is as follows:

TRUE, if | Ei(k.l) -Ei(k.)) | > &1, and

Ei(k,]) < 8,, (where &, is the nominal minimum
value for an edge point to be possible boundary
point)

FALSE, otherwise.

R(k,]) =

Since the values of E; and E, will vary along any given
boundary, it is likely that for any threshold chosen, there
will be some boundaries in the result, R, which will be
broken, and R will therefore contain inconsistent
boundaries. In cases such as these, further decision
processes are required to determine whether or not the
boundary has actually changed.
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B. METHOD B

Method B, while intuitively more straightforward than
method A, requires more computational time due to its
more complex classification scheme. The idea behind
method B is to detect objects which were present in one
time but not in another or have otherwise changed their
spatial characteristics (shape, location). Since this is the
ultimate goal of boundary change detection, method B can
be regarded as the most direct attack on the problem.

The key concept in this method is that if an object
were indeed present in both sensing times and did not
change in spatial characteristics, its spatial characteristics
could be represented adequately by a single cluster. If two
clusters were produced for the object in separate scenes, the
boundaries so obtained would differ somewhat due to a
number of factors (especially subpixel misregistration and
the idiosyncracies in the operation of the classifier), making
a direct XOR of the boundaries impossible. Thus, it would
be reasonable to create only one cluster per object, whether
it exists in only one or both scenes. This is accomplished
with bitemporal classification, which produces a single 2N-
band classified image from two temporally distinct N-band
images. Since there will be only one cluster per object, it is
useful to think of two N-band spectral classes existing for
each cluster, and to regard C; as the N-band classified
image with the classes corresponding to L.

Assuming that C; and C; are so produced and their
(identical) boundaries indicated, the question arises, which
of the boundaries are real, and which are not? If an object
is present in both scenes, its boundaries in both C; and C;
will be real, i.e., correspondent to actual borders in their
respective scenes. We will call such boundaries true
boundaries. Now, if an object is present in scene i and not
in scene j, the classifier will nevertheless create a cluster
which will exist in both C; and C;, and the boundaries of
that cluster will be true in Ci. But if there aren’t
corresponding borders in scene j, the boundaries of that
cluster in Cj will not be true in the sense described above.
Boundaries which do not correspond to borders in their
respective scene will be termed false boundaries. Only if a
boundary is true for one scene and false for the other do
we wish to indicate a change. Since we are interested only
in indicating a changed boundary, it is apparent that
boundary change detection can be accomplished by
determining which boundaries are true and which are false
and then performing an XOR of the boundaries in C, with
those in C..

The four distinct steps in method B are:

1. Preprocessing. The images are preprocessed as in step |
of method A.

2. Bitemporal Classification. The images I, and I, are
treated as a single 2N-band image in the classification
process. Either a GHC or a RGC may be used for this step,
though a RGC may yield more useful results, as previously
discussed. Note that at this point, a general change
detection procedure could be implemented using the
difference between C; and C..

3. Boundary Indication and Calculation of Boundary
Differentials. The boundaries B, and B», and their
differentials Y, and Y», of the classified image are found
using the techniques of 11.A.2.

4. Decision and XOR. The decision as to whether a
boundary is true or false can be determined by comparing
Yi(k,]) and Ya(k,]) to a minimum threshold. Assuming
proper operation of the classifier, there will be at least one
true boundary per indicated boundary. Therefore, if a
boundary is indicated but is determined to be false in either
Y: or Y, that boundary would be indicated as a change,
i.e., R(k,]) = TRUE.

Unfortunately, the above decision process will be
unsatisfactory in most cases since an ideal classifier is
difficult to construct. Also, in general a false boundary will
have a nonzero boundary differential which in some cases
might be higher than the boundary differential of a true
boundary. Here, a single threshold cannot be selected to
yield correct results. To reduce the possibilities of this
occurring, it is useful to introduce another threshold based
on the difference between Y, and Y, which is to be used in
a decision scheme such as that in section III.A.2. If the
difference is minimal, then the likelihood of the boundary
being either true or false in both times is very high. If the
difference is high, say, Yi(k,]) >>Y|(k,]), it would seem to
indicate that the likelihood of Bi(k,l) being true is greater
than the likelihood of Bj(k,l) being true.

While taking this into account, it should be noted that,
in the case of, for instance, an object increasing in
brightness relative to its background, Y, will have a higher
magnitude than Y, for that object. Therefore, care must be
taken not to automatically consider a boundary to be false
simply because its Y; will be much lower in comparison. By
using a careful combination of these two types of
thresholds, satisfactory results may be obtained in many
circumstances.

IV. CONCLUSION AND RESULTS

The approaches to boundary change detection
presented in this discussion have a high theoretical potential
for accuracy. In general, their accuracy will be limited only
by the performance of the classifiers used. While the
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approach used in method B may be regarded as more direct
and potentially more accurate (since the boundaries are
calculated directly from the images, not their differences), it
is more sensitive to the performance of the classifier and
requires more computational time. Method A, while less
accurate in general, seems more suited for an on-board
process, since it involves a much simpler classification
scheme and fewer computational requirements.

Further research into this topic should provide more
information on the optimal classification scheme and, we
hope, an adaptive means of choosing optimal thresholds for
the processes described herein.
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