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ABSTRACT

Three different kinds of median type
estimators for use in applications where the
underlying probability distribution is
multivariable are proposed and analyzed. Among
others such applications arise in the area of
remote sensing classification problems,
multispectral edges filtering and in computer
vision systems. Both aspects, the numerical
complexity and the statistical characteristics of
the estimators are studied and discussed. From
the numerical results obtained by analytical and
computer simulation methods there is evidence

that a simple extension of the scalar median’

estimator has an overall performance (in the mean
square error sense) that is the same or better
than the other two proposed estimators. The
computational requirements of this estimator are
not excessive making it attractive for
applications where large amounts of data are
present.

I. INTRODUCTION

Median estimators have been used extensively
in a variety of =signal processing applications
[Frieden, 19761, [Huang, 19791, [Anuta, 1982].
When compared with more conventional estimators
such as the sample mean it has been shown
[Andrews, 1972] that the median gives a more
reliable estimation of the location parameter cf
impulsive type distributions, i.e. heavy-tailed
pdf's (probability distribution functions). When
the actual signal contains edges or monotonic
changes a moving median estimator has been often
proposed as a way to smooth the data and at the
same time preserve the edges [Gallagher, 1981].
Most if not all of the applications of the median
estimator have been limited to one or two
dimensional signals and the measurements
collected are basically of ’‘monochrome’ nature,
e.g., the kind of data gathered by a monospectral
sensor, On the other hand, applications with
multispectral signals are already numerous and
are growing continuously. Thus we have that most
of the data collected by satellites such as the
LANDSAT series and the measurements taken by
computer vision systems are of multispectral

nature.

Location parameter estimators are often used
in edge enhancement or filtering. The majority of
the procedures developed for the estimation of
edges are not suitable for the multispectral
nature of the signal in applications such as in
Remote Sensing. Edge enhancement techniques, such
as the median filter, based on the order
statistics of the measured samples can not be
easily extended to multispectral data since
concepts such as 'greater than’ or 'less than’,
necessary to find the sample order statistics, do
not have a meaning for what is basically a vector
function.

A common way to get around the multispectral
nature of the data has been the use of methods
developed for the monospectral case and to apply
them separately to each spectral plane. For
linear procedures this approach can have scme
justification in applications where the
correlation among the values from different
spectral planes is very low. For nonlinear
methods such as the median it is not intuitively
clear that this approach is reasonable and if it
is under which conditions.

The objective of this paper is to propose
and to analyze possible extensions of the median
estimator to multispectral data. The estimators
should keep desirable properties of the scalar
version such as edge preserving and robustness
against impulsive noise and they should also
avoid an excessive increase in the amount of
computations required. The analysis is done as
much as possible by exact statistical methcds.
Computer simulation studies are carried out
however for cases where an exact analysis is very
difficult to obtain.

II. PRELIMINARIES

Let it define a multispectral sample {xi} as
the vectors Xyseee xN being independent random

variables with multivariate distributions fl(x),
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fz(x),... fN(x) respectively (note that the

random vectors are not necessarily identically
distributed). One application where this kind of
sample arises is the filtering or enhancement of
multispectral edges [Anuta, 1982]. Another
application is the classificaticn of homogeneous
fields in Remote Sensing data analysis [Kettig,
1975]. In the 1latter an homogeneous field (a
collection of neighboring pixels) is first
identified by an 'homogeneity’ test on members of
the field, then the whole field is classified
into one of the possible classes based on a
certain distance measure. This distance is
computed using a 'mean’ vector that represents
the field. Difficulties occur when these fields
are boundary fields, in which case a few pixels
from a different class accepted as members of the
field can severely affect the value of the ’'mean’
vector and thus lead to the whole collection of
pixels being wrongly classified. In principle a
median type estimator is specially suitable for
this kind of data since it is very robust against
the presence of 'outliers’ in the sample.

A direct straightforward extension of the
scalar median estimator is not possible since as
indicated earlier there is no equivalent for the
sample order statistics in the vector case. In
the following section three possible extensions
of the median filter to the vector variables are
proposed and analized.

III. THE ESTIMATORS

There is an alternate definition of the
median filter in the scalar case that can be
extended without major difficulty to the vector
case, For {xi} a set of scalars, the median can

be defined as the value xMGZ{xi} such that the
following expression is minimized [Randles, 19791

j{:lxj - le (1)

It is easy to prove that such value xM is
the conventional median of the set XysXpseon ,xN.

For the vector variables the following definition
is a natural extension of the scalar case. Given
the set of vectors {xi} the median is the vector

xm€{xi} such that

N
Zd(xi,ﬁu) (2)
(=1

is minimum. d(x,y) is a distance measure between
the vectors x and y. The advantage of this
definition is that the estimate obtained is one
of the vectors present in the random sample
{xi). However even for simple forms of the

distance measure such as d(x,y)=|x-y| the exact
statistical analysis of this estimator is a
difficult problem. For the simple case of three
independent random vectors xl, x2 and x3 with the

same multivariate distribution f(x) the pdf of
le is given by the following expression

p(x) = 3f(x)f / f(y)dayf(z)dz (3)
R" Rn(y,z)

where n 1is the dimensionality of the vector xi

(n=number of spectral components) and Rn(y.z) is

the region in i where |x - zl £ |y - z| and
Ix -yl < 1z - yl.

To evaluate the perfomance of the proposed
estimators the mean square error (mse) criterion
is used. Thus for le

mselx, ] = El(x,;-0)" (x,,-0) ] (4)

where € is the location parameter to be
estimated. It is apparent from (3) that the task
of exactly computing the mse of le is a

formidable one. For the applications where this
estimator is intended to be used the difficulties
are increased even more since as mentioned in the
previous section the samples xi‘s are not

necesarily identically distributed. For this
reason in this paper the mse results
corresponding to 41 have been obtained by

computer simulation methods.

Since the finding of x involves the

M1
computation of all the pairwise distances
d(xi.xj), i#j, it can be easily shown that the

number of operations required by this method is
of the order O(Nz).

The second type of median estimator proposed
here is the following
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s

median {x, {
i1
median {xizl

mz = . (s)
median {xin}
L S
where
T
x )" and

T (xil'xiZ""'xin
{xij} is she set {xlj,xzj,..., xNj}

It is obvious from (5) that Lo is a simple

extension of the escalar median estimator. It is

also clear that X0 is not necesarily one of the
vectors in [xi}. An advantage of X, is that it

is possible to carry out an exact statistical

analysis of its performance as discussed in the
next section.

It is well known that the finding of a
scalar median is intimately related to a sorting
operation for which algorithms of numerical
complexity NlogN have been developed [Knuth,

1975]1. From (5) it is apparent that the
computational requirements of XMQ is also of the

order O(NlogN).

Finally a third kind of vector median
estimator is the one based on the convex hull of
a set of a finite points [Benson, 1966]. This
procedure consist in removing, or 'peeling’, the
convex hull of the set and then removing the
convex hull of the remainder continuing until
only (1-2a)N points remain [Huber, 1972]. A
location parameter estimator can then be obtained
by successively removing the convex layers of the
points Xy, Xp,eeenXy until the innermost layer

has been reached. Define then the median
estimator st as the average of the points of

this innermost layer. Fig. 1 illustrates this
method for a set of points in the plane. Recently
an efficient computer algorithm has been proposed
which calculates the convex layers of a planar

2
€ R ) in O(NlogN) run time [Chazelle,

Thus at least for a bispectral case the
of computation required by Xy3 is not

set (x,
i

1985].
amount

excessively large. However as in the case for le
the finding of various statisties of X3 such as

very difficult. Computer
are used here to analyze the

the mse is in general
simulation metheds

statistical behavior of st'

It should also be noted that an important
feature of the I and xM3 estimators is that

both are independent of any translation and
rotation of the coordinate axes used to define
the vectors X i.e. both yield the same value if

the axes are arbitrarily translated and rotated.
On the other hand ) is by definition

intrinsically related to the orientation of the
axes and will, in general, give different values
if the axes are rotated. This dependence and its
effect on the statistical properties of the
estimator is dicussed later in the section of
numerical results.

IV. STATISTICAL ANALYSIS

previous section the
statistics of the

As indicated in the
computation of most of the
proposed estimators is, in general, quite
complicated. Even for the simple case of
xl,xz....,xN assumed to be independent random

vectors, identically distributed with pdf
MVN(u,Z ) (Multi Variable Normal with mean u and
covariance ¥ ), the -calculation of the mse of
estimators such as I and X3 is indeed

difficult.

Since xM2 is a simple generalization of the

scalar median it is expected that its statisties
are not as hard to compute. The mse of Xy, can be

computed in the following manner. For sake of

. L. 2
simplicity, assume x, € R, and XXy, e X
distributed as fl(x) and L SRS SPYREEY X in
distributed as fz(x) (m+n=N). The computation of

statistics such as E[x&zxle can now be easily

computed since
Elx". x.. 1= El(median(x, })2+(medianix. )21 (6)
XppXyp T EBlimedianiXy, o i2

Let it be gl(x) the pdf of median{xil} then
gl(x) is given by [Pomalaza, 1984]

- m-1\/n \.J, _ -MJ
Sl(x)—mfn(x)Z( J )(M-J_)F“(X)Fz, (x)
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o-1-3 . n—-M+j
[I—Fll(x)] [1 F21] + (7

M
n-1\/m Jix)pd
nfy; (M—J)(j ) E(0F3g 3 (x)

JEM-n+1

m-J n-1-M+
[1—F11(x)] [1 F21(x)]

where M=(N-1)/2, N is assumed to be odd, and fll'

f F and F are the marginal distributions

21 11 21
of fl(x), fz(x), Fl(x) and Fz(x) respectively.

The pdf of median{xiz} can be also computed in

the same manner. Once the pdf’s are known the
computation of (6) is usually a straightforward
numerical integration.

As mentioned previously the value of xM2 is

dependent on the orientation of the coordinate
axes. On the other hand, expected values of
functions of Xy, can in some cases be independent

of the axes orientations. Thus for example if
fl(x) and fz(x) are MVN with the same mean vector

and covariance matrix then it can be proved that
(6) is the same under any rotation of the
coordinate axes.

The results discussed in the next section
are obtained by numerical integration techniques
(xMz) and by computer simulation methods (le and

XMB)' The perfomance of a mcre conventional

location parameter estimator is also computed.
This estimator is the sample mean X, and is

defined as
N
x =(1/N)Zx. (8)
A i
i=1

Since x, is much easier to compute than any of

A
the estimators proposed here, the only cases of
interest are the ones for which the mse of le.

(or Xy, Or st) is smaller than the mse of x,.
V. NUMERICAL RESULTS

To illustrate the performance of the
proposed estimators the following example is

considered. Let it assume a sample of N=9
2
independent random vectors X € R (bispectral
data).
. i . s
distribution £, (X)=MVN(0, Z,), and X100 Xpen
have a distribution fz(x)=MVN(h, Z,) (m+n=N and m

xl,xz,...,xm have a multivariate

> n). This sample could for example arise in an
edge filtering application when a moving window
of 3x3 is moving across a bispectral edge of
height h. Here it is wanted to estimate the
signal value that corresponds to the center pixel
of the window. Assuming that the intersection of
the edge with the window is a straight line then
the parameter to be estimated in this example is
the distribution mean of xl,..., xm, i.e. zero.

To consider different cases for h, 21 and

22. it is initially assumed that both covariance

matrices are equal to A and RA respectively,
where A is a diagonal matrix and R a linear
transformation (rotation by an angle ¢,). In this

manner by varying ¢ ,, different orientations of
the eigenvectors of X, with respect to the

eigenvectors  of Z, can be obtained as

illustrated in Fig. 2 (a). The effect of the axis
orientation on the value of o is studied by

applying a linear transformation (rotation by an
angle ¢,) to xl....,xN. This results in a change

of the distributions as shown in Fig. 2 (b).
Values of ¢, considered are 0, n/8 and n/4. Due

to the symmetry of the problem results for other
angles such as 3n/4, m,etc. can be easily
inferred from the ones already computed.

Table 1 (a)-(c) summarizes the mse values of
the various estimators discussed in this paper
for the case of m=6, n=3 and A=diagl9,1]. For
the scalar case, i.e. monospectral edge, it has
been shown [Justusson, 1979], [Pomalaza, 1980]
that in general, the median gives a smaller mse
than the sample mean, for edge heights greater
than twice the standard deviation o. There it is

2
assumed that m samples have N(0,o ) distribution

and the remaining n samples have N(h,cz)
distribution. From the results on Table 1 (a)-(c)
it can be said that for the bispectral example
discussed here, the various kinds of median
operators proposed have a better perfomance than
the sample mean whenever |hl is roughly equal to

twice x/i;+\/x, or greater. A, and A, are the

eigenvalues of which in this case are 9 and 1
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respectively. Since the cases shown in Table 1
cover a wide variety of cross-correlation values
among the samples components it is fair to expect
that the same type of perfomance is obtained for
different values of A, and 1,.

When comparing among the various median
estimators it becomes apparent that xM2 has an

overall better perfomance than le and st since

all of them have roughly the same perfomance for
values of |nl comparable to twice the sum
VA +VA, and Xy, is definitely better (in the

mse sense) than le or xMa for larger values of
Inl.

Tables 2 (a)-(c) and 3 (a)-(c) shows the
results for m=5,n=4 and m=7,n=2 respectively.
Table 2 corresponds to the case of worst
'contamination’ for which X0 is not clearly

better than le and xM3' This is specially true
for the results shown in Table 2 (c) where xM2

seems to be very sensitive to the coordinate axis
orientation and le appears to be a better

choice. Table 3 corresponds to the 1least amount
of contamination than the previous two cases and
xM2 is definitely more atractive than le or st.

It is interesting to note that xM3 has been often

proposed as an extension to the scalar median for
the multidimensional case [Shamos, 1978]. However
its statistical behavior (mse), at least for the
case discussed in this section, doesn’'t seem to
be very good.

Since the computational requirements of X0
are not worse than vy and Xy3 it is fair to

conclude that for applications where a median
type estimator is wanted, e.g. multispectral edge
enhancement, the use of le is a reasonable

procedure. There are of course applications,
e.g. filtering of multispectral lines, where as
in the scalar case no median type operation will
give good results and different kind of
algorithms have to be proposed [Pomalaza, 19841].

VI. CONCLUSIONS

In this paper three possible median type
estimators for multispectral data are proposed
and analyzed. Areas where these estimators are
intended to be applied are many, such as
multispectral edge filtering or enhancement and
classification of homegeneous fields in Remote

Sensing data analysis. Numerical results
obtained by exact analytical methods and computer
simulation give evidence that the estimator that
is the most simple to define and to compute has
also and overall better perfomance for a variety
of data configurations.
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Figure 1. The convex layers of a set of planar
points. st is defined as the average

of the innermost layer points.

(a)

(b)

Figure 2. Ellipses of equi-probability
corresponding to the bivariate normal

distributions fl(x) and fz(x).
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Table 1

Mean Square Error
m=6, n=3

(a) ¢,=0

b=(3,0) b=(6,0) b=(9,0)

!A 2.111 5.111 10.111

le 2.806 5.833 10.086

XM2(1) 2.697 4.790 6.056

XMZ(’) 2,703 4,885 6.361

le(s) 2.706 4,915 6.420

IM3 2.793 5.852 8.810
(b) ¢p,=n/4

h=(3,0) k=(6,0) h=(9,0)

xA 2.111 5.111 10.111

Xy, o 2.969 5.759 9.790

X, () 2.915 5.416 6.370

x,,(?) 3.088 5.624 6.352

Xy (*) 2.946 5.310 6.379

Xy,  2.878 5.338 7.642
(c) ¢b,=n/2

h=(3,0) b=(6,0) b=(9,0)

X, 2.111 5,111 10.111
i 3.001 5.713 9.785
xM2(1) 3.618 6.238 6.498
xMz(’) 3.088 5.624 6.352
xMz(’) 2.706 4.915 6.420
X3 2.860 5.209 7.285

(1) P,=0, (3) p,=n/8, (3) P, =nl4

b=(9,0)

17.111
16.935
13.403
13.930
14,108
17.730

b=(9,0)

17.111
14.559
14.787
15.012
14.577
15.887

b=(9,0)

17.111
13.824
16.018
15.012
14.108

Table 2
Mean Square Error
m=5, n=4
(a) ¢,=0
b=(3,0) h=(6,0)
xA 2.888 8.222
le 3.590 9.070
xMz(i) 3.535 8.460
XMZ(’) 3.538 8.538
xMz(’) 3.539 8.572
st 3.636 9.241
(b) @,=n/4
h=(3,0) h=(6,0)
x, 2.888 8.222
le 3.826 9.194
xMz(l) 3.888 9.980
xMz(’) 4,145 10.722
xMz(’) 3.904 9.798
st 3.800 9.049
(c) @,=n/2
h=(3,0) h=(6,0)
X, 2.888 8.222
le 3.988 8.931
xM2(1) 5.006 12.944
xMz(’) 4.145 10.722
xMz(’) 3.539 8.572
st 3.812 8.789

14.809

(1) P,=0, (2) P,=n/8, () P,=n/4
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Table 3

Mean Square Error
m=7, n=2

(a) @,=0

h=(3,0) h=(6,0) h=(9,0)

x, 1.555 2.888 5.111
X, 2.237 3.640 5.725
x,, (%) 2.128 2.881 3.206
xMz(’) 2,133 2.935 3.335
x,,(*) 2.135 2.949 3.351
X,  2.278 3.416 4.387
(b) ¢p,=n/4
b=(3,0) h=(6,0) h=(9,0)
X, 1.555 2.888 5.111
X, o 2.312 3.624 5.685
x,, (1) 2.228 3.106 3.303
x,,(?) 2.320 3.153 3.296
X, (*) 2.258 3.056 3.321
X,  2.224 3.250 3.693
(c) ¢, =n/2

b=(3,0) b=(6,0) b=(9,0)

x, 1.555 2.888 5.111
X4 2,333 3.559 5.585
XMZ(‘) 2.566 3.307 3.097
xMz(’) 2.320 3.153 3.296
XMZ(’) 2.135 2.949 3.351
Xy3 2.236 3.109 3.498

(2) #,=0, (2) P, =n/8, (3) P =n/4
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