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ABSTRACT

This paper presents a statistical approach to
modeling and segmentation of noisy images with
particular applications to Synthetic Aperture Radar
(SAR) imagery. It is assumed that the image is
corrupted by additive independent noise and that
the noise-free image is modeled as a Gibbs distri-
buted random field or equivalently a Markov Random
Field (MRF).

Based on the Gibbs Distribution (GD) models
used, a maximum a posteriori (MAP) segmentation
algorithm is presented, which uses a dynamic
programming formulation. To bring the computa-
tional requirements to manageable levels, a near
optimal version of the algorithm is implemented.
The algorithm is capable of producing 2,4, 8 or 16
level segmentations of images with relatively low
SNR's. Several examples are presented on the
application of the algorithm to SAR imagery.

I. INTRODUCTION

In the recent image processing literature
there has been increasing interest in use of sta-
tistical techniques for modeling and processing
image data. Much of this work has been directed
toward application of Markov Random Fields (MRF)
(Abend et al (1965), Chellappa and Kashyap (1982),
Hansen and Elliott (1982), Derin et al (1984)), and
recently toward use of Gibbs Distribution (GD)
models (Hassner and Sklansky (1980), Cross and Jain
(1983), Elliott et al (1984), Geman and Geman
(1984), Cohen and Cooper (1983), Elliott and Derin
(1984)). Although interest in MRF models for
tackling image processing problems can be traced to
the work of Abend et al (1965), only recently have
the appropriate mathematical tools for the exploi-
tation of the full power of MRF's in image
processing found their way into the computer vision
literature. In particular, following the estab-
lishment of the MRF-GD equivalence in the 1970's,
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the GD characterization of random fields is
attracting increasing attention.

Most of the recent studies mentioned above
make use of the GD characterization of MRF's.
Hassner and Sklansky (1980) and Cross and Jain
(1983) use GD models to characterize textures as
well as bloby region formations. Elliott et al
(1984), using GD models, proposed a MAP
segmentation algorithm. Geman and Geman (1984) also
give a MAP segmentation algorithm using GD models
and a stochastic relaxation technique. Cohen and
Cooper (1983), on the other hand, propose parallel
and hierarchical segmentation algorithms for
textured images using GD models. Elliott and Derin
(1984) presented a hierarchical GD model for
textured and noisy images and a segmentation
algorithm for such images. They also addressed some
of the parameter estimation problems that arise in
GD models and segmentation algorithms.

This paper presents a MAP segmentation
algorithm based on a GD model and application of
this algorithm to several SAR images. The image is
assumed to be corrupted by additive independent
noise and the noise-free image is modeled as a
particular GD. A segmentation algorithm that seeks
the MAP estimate, that is a realization which
maximizes the a posteriori distribution of the
noise-free image given the noisy one, is presented.
The maximization of the a posteriori distribution
is carried out using dynamic programming formula-
tion. Due to the formidable nature of the compu-
tational requirements, however, a near-optimal
version of the algorithm, which optimally processes
narrow strips of the image and combines these to
yield an estimate of the whole image, is proposed.

The proposed segmentaion algorithm is capable
of segmenting the noisy image into 2, 4, 8 or 16
region types. For more than 2 region types, a
computationally efficient version of the algorithm,
consisting of a sequence of binary segmentations,
is presented. Each binary segmentation is preceeded
by an estimation procedure, which, assuming that
the image to be processed consists of two gray
levels that are corrupted by additive independent
Gaussian noise, yields estimates of the two gray
levels and the noise variance. Thus, except for the
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parameters of the GD used, the segmentation and
parameter estimation is carried out in coordination
and the overall algorithm is fully automated. This
algorithm is applied to several SAR images to get
2, 4 or 8 level segmentations. An earlier version
of this algorithm was presented by Elliott et al
(1984).

The paper is organized as follows. In Section
II, the model and the segmentation problem are for-
mulated in a statistical framework. The description
of a special class of GD used in this study is also
presented in Section II. The MAP segmentation algo-
rithm is described in Section III and examples on
application of the algorithm are presented in
Section IV. Some comments and concluding remarks
are given in Section V.

II. PROBLEM FORMULATION AND BACKGROUND ON GIBBS
DISTRIBUTIONS

A. THE MODEL

The images of concern are all defined on a
finite rectangular lattice of pixels, given by

L = ((1,3):1<1<N, , 1<3EN ) D)

It is assumed that the observed image (matrix) y =
[yijj is a realization from the random field

Y = [Yij] defined on lattice L. In other words, the
random variables Yij at each pixel (i,j) eL,

constitute the random field Y. The observed image
random field Y is a function of two other random
fields: (i) the "scene" (noise-free image) random
field X, and (ii) the corruptive noise random field
W, all three defined over the same N1xN2 lattice.

The functional form of the relationship among
these three random fields is given by

Yij = Xij + wij (i,j) €L (2)
or in matrix form
Y=X+W (3)

It is assumed that the noise random field W = [wij]

consists of independent identically distributed
Gaussian random variables with mean 0 and variance

o2, i.e., W.. ~ N(0,02).

1]

The scene random field X is assumed to be a
(finite) discrete valued random field, where each
Xij takes one of M values [r1,r9,...,rm}, called

"gray levels". X.. = r_ means that pixel (i,j) is

ij m

of region type m. Thus it is being assumed that the
noise-free image, i.e., the scene, consists of M
distinct region types. The discrete random field X
is assumed to be a Gibbs distributed random field.
The definitions of GD and the particular distri-

bution assumed for X are presented in the following
subsections. It should be pointed out that the
correlation and the spatial continuity in the scene
random field X are very adequately characterized by
the proposed GD models.

Finally, the scene random field X and the
noise random field W are assumed to be statis-
tically independent, although the formulation and
the algorithm are amenable to a region dependent
noise with no additional computational burden.
Moreover, the Gaussian assumption on the noise is
not essential and can be altered to any other
distribution as long as the independence of noise
from pixel to pixel is preserved.

B. THE SEGMENTATION PROBLEM

For the model described above, the segmenta-
tion problem is posed as follows. It is desired to
devise an estimation scheme which, based on the ob-
served image y, a realization from the noise cor-
rupted random field Y, will put out an estimate

* B
x = x (Y) Yy of the noise free scene. The seg-

mentation algorithm presented in this paper
attempts to determine the maximum of the a
posteriori distribution P(x|Y=y). Due to the

N1N2
astronomical number of x configurations, M to
be exact, the maximization of P(x|Y=y) can not be
done by a straight-forward search. The specific
algorithm proposed in this paper that attempts to
determine the MAP estimate is presented in Section
ITI.

C. BACKGROUND ON GIBBS DISTRIBUTIONS (GD)

Based on the rectangular lattice L described
above, GD are defined through the following set of
definitions. First a neighborhood system on lattice
L and the associated cliques are defined.

Definition 1. A collection of subsets of L
described as

n = {nij=(i.J)€L,nij L} (4)

is a neighborhood system on L if and only if nij'

the neighborhood of pixel (i,j) is such that

1o €1,3) ¢ U and (5)

J
2. If (k,%) € " then (i,j) € n (6)

KL
for any (i,j) e L.

A hierarchically ordered sequence of
neighborhood systems that are commonly used in
image modeling are n1, nz, n3,.. . n1={n1j} is such
that for each (i,j) e L (except for pixels on the
boundaries) nlj consists of the four pixels

neighboring pixel (i,j). n2 = {nij} is such that

nij consists of the eight pixels neighboring (i,j).
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Figure 1. Hierarchically arranged

neighborhood systems nm.

The neighborhood structure for n1 and n2,

as for n3, n)4 and n5

as well
are shown in Fig.1. The

neighborhood system nm is called the m th order
neighborhood system. The "cliques" associated with
a lattice-neighborhood system pair (L,n) is defined
as follows.

Definition 2. A clique of the pair (L,n), denoted
by ¢, is a subset of L such that

1. ¢ consists of a single pixel, or
2, For (i,j)#(k,%), (i,j) € c and (k,%) € ¢
implies that (i,j) € Mg

The collection of all cliques of (L,n) is denoted
by C = C(L,n).

The types of cliques associated with n1 and n2
are shown in Fig.2. Now a GD can be defined as
follows.

Definition 3. Let n be a neighborhood system
defined over the finite lattice L. A random field
X-{Xij} defined on L has Gibbs Distribution (GD) or

equivalently is a Gibbs Random Field (GRF) with
respect to n if and only if its joint distribution
is of the form

P(X=x) = % o Uix)

(7)

where U(x) = ) Vc(x) energy function (8)

ceC

Vc(x) = potential assoc. with clique ¢ (9)
z =17 g (%) partition function (10)
X

The partition function Z is simply a normalizing

22

—
{6

 ——
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Clique types }n n
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' - neighborhood
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. 1 2
Figure 2, Neighborhood systems n and n, and

their associated clique types.

constant, so that the sum of the probabilities of
all realizations x, add to unity. The only condi-
tion on the otherwise totally arbitrary clique
potential Ve(x) is that it depends only on the

pixel values in clique c.

The origins of GD lie in pysics and statis-
tical mechanics literature. Ising (1925) wused a
special GD, now known as the Ising Model, to
describe the magnetic properties of ferromagnets.
The source of the revived interest in GD,.espe-
cially in the context of image modeling and
processing is an important result known as the
Hammersley-Clifford Theorem. This result proven in
the 1970's independently by several researchers,
establishes a one-to-one correspondence between
MRF's and GRF's. Unlike the MRF characterization,
the GD characterization provides the joint
distribution of the random field, is free from
consistency problems and provides a more workable
spatial model. For a detailed treatment the reader
is referred to Besag (1974).

D. A CLASS OF GIBBS DISTRIBUTIONS

In this subsection, a particular class of GD,
which is used to model the scene random field X, is
presented. 1In concurrence with the model described
above, the random field X consists of M-valued dis-
crete random variables {xij} taking values in

R = {r1,r2,...,rm}. To define a GD it suffices to

specify the neighborhood system n, the associated
cliques and the clique potentials, Vo(x). Here, it

is assumed that the random field is homogeneous,
that is the clique potentials depend only on the
clique type and the pixel values in the clique, but
not on the position of the clique in lattice L. The
distribution is specified in terms of the second

order neighborhood system, n2. The extension to
larger neighborhood systems and the restriction to
smaller ones are evident.
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The neighborhood system is n2 and cliques are

those associated with n2. The clique potentials
are defined as follows. A parameter is assigned to

each clique type, except for the single pixel
clique. In other words,

[ ’B ] ’ [ 1B ] ’ [ 8 J [ B ]
1 2 ’ 3 ’ ’
( )

SRR R R B SR B LS

3 1

The associated clique potentials are defined as

0 if all xij
Vc(x) = (12)

-0 otherwise

in ¢ are equal

where 0 is the parameter specified for the clique
type c. For the single pixel cliques, the clique
potential is defined as

Vc(x) = o for xij = T (13)

The o parameters can be used to control the per-

centage of pixels in each region type, while the
other parameters can be used to control the size
and direction of clustering.

This class of GD has been used extensively by
the authors for modeling wide variety of images,
both as region formation models and as texture
models. For a more detailed treatment of this class
of GD, the reader is referred to Elliott and Derin
(1984) and Derin (1985-a).

III. MAP SEGMENTATION ALGORITHM

In this section, first the (optimal) MAP
segmentation algorithm and then a near-optimal
version of it, necessitated by computational
concerns, are described.

A. MAP ALGORITHM

As pointed out in the previous section, MAP

*
estimate of the scene is the realization x that
maximizes the a posteriori distribution P(X=x]Y=y)
based on the observed image y. Using Bayes' rule

P(Y=y|X=x) P(X=x)
P(Y=y)

P(X=x|Y=y) = (1)

Since P(Y=y) is independent of the maximization
over x, equivalently, the numerator is to be

*
maximized. That is, x=x that maximizes

P(X=x,Y=y) = P(Y=y|X=x) P(X=x) (15)
or equivalently that maximizes

&n P(X=x,Y=y) = &n P(Y=y|X=x) + &n P(X=x) (16)

is sought.

The first term in the RHS of (16) is the
ndata" term and is merely the sum-log of marginal
Gaussians. The second term is the "model" term and
is given in (7)-(10), with clique potentials
defined in (11)-(13). Both terms can be arranged in
recursion, thus making dynamic programming an
attractive tool for the maximization of the joint

log-likelihood. This however involves an MN1 state
dynamic programming algorithm and is computa-
tionally prohibitive for N1>H. So, a near-optimal

version of the algorithm is adopted instead. The
optimal MAP algorithm is conveniently expressed as
a particular case of the near-optimal version.
Therefore, the near-optimal algorithm is described
first, and the particular case that corresponds to
the optimal algorithm is specified afterwards.

B. NEAR-OPTIMAL MAP SEGMENTATION

In this subsection, an optimal algorithm is
posed for processing images comnsisting of a few
rows. The complete near-optimal algorithm is then
obtained by applying this optimal processor on
overlapping strips of the larger N1xN2 image. This

algorithm will be near-optimal, when correlation
between the random variables drops rapidly as the
distance between them increases. This assumption is
reasonable in the sense that it can often be shown
for 1-D Markov processes. However, calculation of
correlations in a MRF is extremely difficult even
for the simplest case, and is an unresolved problem
in statistics literature.

First consider the prolem of segmenting a DxN2

image, where D<<N1. Using the Gibbs likelihood for

X and the Gaussian i.i.d. conditional likelihood
for data, the two components of the joint likeli-
hood given in (16) can be expressed as

gn P(X=x) = - n Z + v, (x) (17
e
DN

4n P(Y=y|X=x) = - —Eg n (2w02)

M

- ¥ I gy’ (18)
m=1 (i,j)eS_ 20 J
m
where Sm = {(i,3) : Xij = rm).

It is noted here, that the joint log-likeli-
hood given in (16), with the two components given
in (17) and (18) can be calculated recursively as
follows

ND2

n (2ﬂ02) - 4n Z (19)
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Bem byt Lk Vo)
ceC
M
1 2
- 3 Y — (y..-r) (20)
m=1 (i,j)esz 202 toom

L = 4n P(X=x,Y=y) (21)
N
2
where
k=1,k R . .
€ = {c : ¢ contains only pixels in
column k or only pixels in
columns k-1 and k} (22)
K - . .
Sm = {(i,]J) : xiJ = rm, 1<1i<D, j=k} (23)

This recursion in conjunction with the principle of
optimality allows formulation of a forward dynamic

*
programming algorithm for finding x that maximizes

Ri

No

The state space associated with the dynamic
D "
programming algorithm has dimension M, since there

are MD possible segmentations of each column of the
DxN2 scene. This implies that the algorithm would

have N2 iterations with on the order of M2D calcu-

lations during each iteration. Thus, this algorithm
may be computationally tractable only for small
values of M and D, e.g., 2 <M, D <4, Using the
hierarchical segmentation scheme that is described
below, this algorithm can be applied iteratively to
segment images for which M > 4,

The above algorithm is a standard dynamic
programming application, hence details are not
given here. However, the following remarks are in
order. The value of lo is independent of any

segmentation x, and hence the algorithm can be
initialized by setting 10 = 0. In particular, it is

not necessary to undertake the difficult task of
calculating the partition function Z. It is also
noted that in processing the DxN2 strip if scene

values at pixels neighboring the strip are
available, this informa-tion can be used as a
boundary condition for the MRF. If such a boundary
condition is not avail-able, then eiher a
fictitious one can be hypo-thesized or the pixels
of the strip along the boundary can be assumed to
have smaller neighbor-hoods.

The dynamic programming algorithm described
above is capable of optimally processing a DxN2

strip of an NixN image, where D<<N1' It gives the

2

optimal MAP segmentation of the DxN_ strip based on

2

the image data on that strip. Thus, for D = N1 this

algorithm gives the optimal MAP estimate. But for

reasons explained above the algorithm can not be
implemented unless for small D. Hence, the near-
optimal version described below was devised.

In order to use this optimal processor for a
strip to obtain segmentation of the whole image, it
is assumed that the random variables Xij and
X.+D . for all (i,j) have negligible correlation.

l ’\]
Thus, the impact of the image data on and below row
i+D, on the segmentatio of row i is assumed to be
negligible. In view of this, the complete segmen-
tation procedure is described by the following
algorithm.

Segmentation Algorithm

Step 0 Choose a value for D, 2 < D < 4,

Step 1 Set I = 1 - -

Step 2 Apply the optimal strip processor (dynamic
programming algorithm) to rows I through
I+D-1.

Step 3 If I+D-1=N1, store the segmentation for
rows I through I+D-1 and go to Step 7.

Step 4  Store the segmentation for row I and

- discard the rest.

Step 5 Set I=I+1.

Step 6 Go to Step 2.

Step 7 Stop.

To summarize, the dynamic programming algo-
rithm is applied to overlapping image strips of
width D, but only the segmentation of the first row
of each strip is used. For example, the processing
of rows 1 through D yields a segmentation of row 1,
and the processing of rows 2 through D+1 yields a
segmentation of row 2. Under the correlation
assumption above, this algorithm is near-optimal
since the data in row I+D and below will have
little impact on the segmentation of row I.

As pointed out above, the strip dynamic
programming algorithm can make use of a boundary
condition if one is available. In the overall
segmentation algorithm described above, while
processing the Ith strip consisting of rows I
through I+D-1, the segmentation of row I-1, which
was obtained during processing the previous strip,
is used as a bounday condition. For I=1, however,
there is no such previous segmentation; therefore
for I=1, a boundary condition is either hypo-
thesized or not used at all.

As it was alluded to above, when M, the number
of region types, is larger than 4, direct appli-
cation of the algorithm is computationally not
feasible. Therefore, a hierarchical segmentation
scheme can be used instead. The hierarchical
segmentation scheme being proposed consists of
successive applications of the binary segmentation.
The image is first segmented into two region types
by binary segmentation (M=2) and then each region
is segmented into two region types and so on. Thus,
using binary segmentation algorithm only, M level
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segmentation can be obtained by M-1 applications of
the binary segmentation algorithm. As it is shown
by examples in Section IV, the hierarchical
segmentation scheme outlined here yields extremely
good segmentation results for M=4 and M=8.

It should be pointed out that in any appli-
cation of the segmentation algorithm - binary or M-
ary - the intensity levels rm's and noise variance
02 (or ci's if noise is region dependent) must be
known. If these parameters are not known in
advance, they are estimated using the method of
moments for estimatig the component parameters of
Gaussian mixtures. For a detailed treatment of the
method of moments the reader is referred to Cohen
(1967) for 2 component mixtures and to Derin (1985-
b) for 2 or more component mixtures.

Finally, the segmentation algorithm described
above can easily be revised to accommodate for
region dependent noise, possibly non-Gaussian
noise, potential functions Vc's other than those

given in (11)-(13) and neighborhood systems larger

than the n2 used here. The computational require-
ments of the algorithm, however, will increase for
larger neighborhood systems, but will not be
significantly effected by the change in the other
assumptions.

IV. EXAMPLES

In this section, examples are presented on the
application of the near-optimal MAP segmentation
algorithm described above to several SAR images.
The SAR images considered are all somewhat noisy,
and hence no additional noise is added. They are
assumed to be realizations from a scene random
field corrupted by additive independent noise, as
described in Section II. The scene is an M-valued
GD of the class described in Section II and the
noise is i.i.d. Gaussian.

Using the hierarchical segmentation scheme
described above, 2, 4 and 8 level segmentations of
SAR images are obtained. The binary segmentation
algorithm works as follows. The noisy image data is
processed and estimates for the two gray levels and
the noise standard deviation are obtained using the
method of moments. These estimates are then used to
obtain the MAP - dynamic programming segmentation
of the image. Other parameters necessary for the
segmentation algorithm are the strip width D and
the GD clique potential parameters given in (11)-
(13). In extensive experimentations, strip width
D=3 was found to be adequate. D=4 did not result in
a significant improvement over the D=3 case. Hence,
in all segmentation results presented here D=3 was
used for strip width.

For the clique potential parameters of (11)-
(13), the following assumptions are made. All ai’s

are taken as 0, thus prior distribution is assumed
to be uniform. Moreover, all Yi's and 51 are also

(a)

(b)%

Figure 3. (a) SAR image of Santa Barbara,
(b) 128x128 section from (a), its 2, 4, 8 level
segmentations with 8=0.15.(%)

assumed to be 0. Thus, the only non-zero clique
potentials are those of the pair cliques. For the
examples in this paper, all pair clique parameters
Bi=8 for i=1,..,4. Experimentations with different

g values indicate that the segmentation is quite
sensitive to B values. Larger B values eliminate
noisy data, but in the process image detail is also
eliminated. Conversely, small B preserves image
detail but leaves noise speckles uncorrected. This
argument is substantiated by some examples
presented below.

The sensitivity of the segmentation to
parameters, and the seemingly casual assignment of
parameter values is somewhat disconcerting. This
fact emphasizes the strong need for parameter
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(b)

Figure 4. (a) SAR image of Baltimore Harbor,
(b) 128x128 section from (a), its 2, 4, 8 level
segmentations with B=0.1.(%)

estimation techniques in GD models. There are a few
studies on this important problem (Besag (1974),
Cross and Jain (1983), Derin et al (1985)). In this
work, however, parameter estimation on the GD model
was not considered. Values for the B parameters
that experimentally give good segmentation results
were used. The B parameter used in each case is
specified.

Examples presented here are segmentations of
sections from 4 SAR images that were provided by
ONR. These images are:

1. Santa Barbara (256x256),
2. Baltimore Harbor (256x256),
3. Ocean Scene (512x512),
4, Chesapeake Bay (512x512).

*¥ Stands for "in clockwise order, starting with the
upper left quadrant".

(a)

(b)

Figure 5. (a) SAR image of Ocean Scene,
(b) 128x128 section from (a), its 2, 4, 8 level
segmentations with B=0.2.(¥*)

128x128 sections from these images were selected
and segmented.

For the first three of these images, a 128x128
section from each one is selected, which are
depicted in Figs. 3.a, 4.a and 5.a. Each one of
these 128x128 SAR images are segmented to 2, 4 and
8 regions. The corresponding segmentation results
are shown in Figs. 3.b, 4.b and 5.b. From the
fourth, i.e. Chesapeake Bay image, 3 different
128x128 sections are selected (Figs. 6.a, 7T.a and
8.a). Each one is first segmented to 2 regions with
3 sets of B parameters (Figs. 6.b, 7.b and 8.b) and
then segmented to 2, 4 and 8 regions (Figs. 6.c,
7.c and 8.c). It should be noted that, in some
instances, although a 4 or 8 level segmentation is
sought, the algorithm yields fewer significantly

1985 Machine Processing of Remotely Sensed Data Symposium

288



(a)

(c) (c)
Figure 6. (a) SAR image of Chesapeake Bay, Figure 7. (a) SAR image of Chesapeake Bay,
(b) 128x128 section from (a), its 2 level

(b) 128x128 section from (a), its 2 level
segmentations with g=0.3, 0.5, 0.8,(*), (c) 128x128
section from (a), its 2, 4, 8 level segmentations

with 8=0.5, 0.4, 0.2.(%)

segmentations with 8=0.1, 0.15, 0.2,(¥),
(c) 128x128 section from (a), its 2, 4, 8 level

segmentations with B=0.15.(¥)
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(b)

(c)
Figure 8. (a) SAR image of Chesapeake Bay,
(b) 128x%128 section from (a), its 2 level
segmentations with g=0.1, 0.14, 0.16,(%),
(c) 128x128 section from (a), its 2, 4, 8 level
segmentations with 8=0.14.(%)

distinct levels. If two levels are very close in
value, then segmentation into these two levels is
not carried out. For example, in Fig. 6.c, the 4
level segmentation yields 3 distinct levels and the
8 level segmentation yields 5 distinct levels.

Since noise-free scene is not available, it is
not possible to assess the goodness of the segmen-
tations presented here. But our experimentations
with test images indicate that the algorithm yields
segmentations that are quite accurate even for low
SNR images.

V. CONCLUDING REMARKS

This paper presents a new approach to segmen-
tation of noisy images, in particular SAR images.
It uses the GD to model spatial continuity or
clustering properties of regions. The algorithm is
recursive in nature, requires a single pass over
the data, and works well at low signal to noise
ratios. The extension of the algorithm to the
problem of segmentation of textured images is
already implemented and the preliminary results are
promising.

Areas that require future work are the
parameter estimation problem in GD and development
of GD models to classes of images, which are of
interest.
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