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ABSTRACT

The performance of a registration system is often
measured using the variance of registration error. The
variance of registration error is usually not found
exactly but approximated through small signal analysis
of the registration system model. The accuracy of the
variance of registration error obtained in this way is
often in question.

This paper develops a procedure for finding upper
and lower bounds on the variance of registration error.
The procedure is applied to a one dimensional, discrete
registration system. Results are presented for signals
with a variety of different spectra.

I. INTRODUCTION

There are many situations were one must first
align or register two signals before the two signals can
be processed. For example noisy signals from the sen-
sors in a beam detection array are often first aligned or
registered and then summed to form the desired com-
posite signal.

The procedures used for affecting signal registra-
tion differ in detail but in general involve computation
of some kind of matching function which peaks in the
vicinity of the correct registration position. The signals
involved are usually corrupted with noise. The noise
affects the position for which the matching function
peaks, thereby causing registration errors. In practical
systems the registration error is not known exactly and
therefore must be treated as a random variable.

A measure of registration system performance that
is commonly used is the variance of registration error.
For most registration systems the variance of registra-
tion error can not be obtained exactly so it must be
estimated or obtained through approximation. One
method of obtaining an approximate variance of regis-
tration error involves approximating the portion of the
matching function that is independent of the noise, in
the vicinity of its peak, with the first few terms of its
Taylor series expansion. Analysis of the approximated
matching function yields a variance, which approxi-

mates the variance of registration error for the original
matching function. This method was used by Hel-
strom® in a continuous radar range estimation prob-
lem. There are a number of examples(V®) where this
method has been applied to one dimensional problems.

McGillem and Svedlow*) extended this method to
obtain an approximation for the variance of registration
error for a two dimensional continuous signal registra-
tion system. Steding and Smith(® applied this approach
to obtain a variance of registration error for a two
dimensional registration model which differed slightly
from that of McGillem and Svedlow.

A major difficulty in using the variance found by
the above method is uncertainty about whether or not
the approximation is accurate. It is sure to be accurate
if the registration error is ”small” but then the question
of what constitutes "small” arises. Currently, the only
quantitative guide is due to Ianniello® who studied the
threshold effect that occurs in the registration problem
when signal to noise ratio becomes small. This thres-
hold effect is a consequence of the possible occurrence
of large registration errors caused by ”false peaks” in
the matching function which occur at low signal to
noise ratios. The term ”false peak” is used to refer to a
peak occurring at a matching position substantially
removed from the main lobe of the matching function.
Ianniello has provided a quantitative result for predict-
ing the onset of threshold for the one dimensional case
when a cross-correlation function is used as a matching
function. Since the Taylor series approximation tends
to eliminate any false peaks in the matching function,
the variance of registration error based on this approxi-
mation will be very optimistic for signal to noise ratios
(SNRs) below threshold. In fact one might anticipate
poor accuracy even before threshold is reached.

The main objective of this paper to give a pro-
cedure that yields an upper and lower bound on the
variance of registration error for a registration system
that is operating under conditions where the registra-
tion error is constrained to be less than some max-
imum. The procedure is applied to a fairly general, one
dimensional, discrete model, where the cross-correlation
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function is used as the matching function and where
signal and noise power spectra are known. Results are
presented for signals with a variety of spectra.

The organization of the paper is as follows. Section
2 outlines the procedure used to obtain the upper and
lower bounds for the variance of registration error. Sec-
tion 3 describes the model to which the procedure is
applied. Section 4 obtains an expression for the
approximate variance of registration error, while section
5 contains the results of four case studies. Concluding
comments are contained in section 8.

II. THE BOUNDING PROCEDURE

The procedure for finding a lower (upper) bound
on the variance of registration error involves finding a
new mathematically attractive matching function that
yields a smaller (larger) registration error for each and
every registration. Then based on the new matching
function the variance of registration error is calculated.
This calculated variance is a lower {(upper) bound on
the variance of registration error for the system of
interest.

In the past many have used the Taylor series
approach to obtain an approximate variance of registra-
tion error for a variety of registration models((2)(4)(5)(8),
The same approach can be used to obtain lower and
upper bounds on the variance of registration error.

The Taylor series approach involves approximating
the matching function in a way that makes the calcula-
tion of the variance of registration error possible. This
is done by replacing the noise independent portion of
the matching function with a parabolic approximation.
The curvature of the parabola is chosen to give a good
approximation to the matching function in the region
near correct registration. The curvature of this para-
bola can, however, also be chosen so that the registra-
tion error incurred is less (more) than the actual regis-
tration error for each and every registration. The vari-
ance of registration error based on the parabolic
approximation can be calculated and forms a lower
(upper) bound on the variance of error for the model of
interest.

The difficulty is finding the curvature that ensures
the approximated matching function yields a smaller
(larger) registration error for each and every registra-
tion. In pursuit of this curvature the following proposi-
tion is useful.

Proposition 1

A matching function m,; yields an equal or smaller
registration error than matching function m, for each
and every registration providing:

1) m; and my can be expressed as the sum of two
components, a signal component and a noise com-
ponent.

2) The signal component for both m; and my is an
even function about the correct registration posi-
tion.

3) The noise component of m; is the same as that of
my.

4) The slope (with respect to registration shift) of the
signal component of m is less than or equal to the
slope of the signal component of m, for registra-
tion shifts greater than the shift at correct regis-
tration. (By condition 2 the slopes of the signal
components are odd about the correct registration
position. Therefore, for registration shifts less
than the shift at correct registration the converse
is true, the slope of m, is greater than or equal to
the slope of m,.)

Proof
The proof of this proposition will be done by con-

tradiction. It will be assumed that the registration error

incurred using m,; is greater than that incurred using
my. This leads to a mathematical contradiction which
implies the assumption is false.

Let X; and X, be the registration shifts that max-
imize m; and my respectively for a particular registra-
tion. Let X, be the shift for correct registration.
Assume the registration error incurred using m; is
greater than that incurred using m,. Consider the four
cases a) X;2>Xp5 Xo2>Xp b) X;<Xp, X2 X5 c)
X, <Xy, Xo<Xy; and d) X;>X,, X,<X, which cover
all possible values for X; and X.

Proof for case a)

The proof starts by assuming the registration error
for matching function m is greater than that for my;
that is X;>X,. By definition

X, dmy(2)

my(X)-m(Xy) = fX, 4% and (p1)
X, d
o X mo(X) = [y (p2)

By conditions 3) and 4) of the proposition the
integrand of the right side of (pl) is less than or equal
to the integrand of the right side of (p2) for all z in the
interval (X2,X))- This implies
my(Xp)-my(Xz) Kmo(X;)-my(X,). Since X; maximizes m,
and X, maximizes m, the above inequality has a posi-
tive number less than or equal to a negative number.
Therefore the assumption that X; is greater than X,
must be false and the proof for case a)is complete.

Proof for case b)

The proof starts by assuming the registration error
for matching function m is greater than that for my;
that is —(X-Xy) >(X,-Xy). By definition
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XAX-X)) dmy(2)

my(Xp)-my(X,) = IX, iz dz
o &6
XXX dmy(2)
mo(Xo)-maXy) = [, ;:2 —dz

X +HX-X) dmy(2)
+ ey IO (p4)

By conditions 2) the slope of the signal components are
odd about X, and by condition 4) the noise components
are identical which makes the right most integrals of
(p3) and (p4) equal. By condition 3) and 4) the remain-
ing integral of (p3) is greater than or equal to that of
(p4). This implies my(Xp)-my(X;)> my(Xo)-my(X;).
Since X; maximizes m, and X, maximizes m, the above
inequality has a negative number greater than or equal
to a positive number. The assumption that
~X;-Xp)>(Xo-Xp) is therefore false and the proof of
case b) is complete.

The proofs of cases c) and d) are similar to those
of a) and b) and therefore omitted. This completes the
proof of the proposition.

The procedure for finding the lower (upper) bound
on the variance of registration error can now be com-
pleted using proposition 1. The procedure is as follows:

1) The matching function of interest is to satisfy the
conditions on my (m;) of proposition 1.

2) A new matching function, based on approximating
the matching function of interest, is created to
satisfy the conditions on m, (my) of proposition 1.
This is done by replacing the signal component of
the matching function of interest with a parabola.
The curvature of the parabola is chosen to satisfy
condition 4) of proposition 1.~

3) The variance of registration error is calculated for
the approximation based matching function. This
variance is a lower (upper) bound on the variance
of registration error for the matching function of
interest.

When the procedure is used as stated the upper
bound on the variance of registration error will in gen-
eral be infinity. This is the case since the parabolic sig-
nal component of the approximation based matching
function will, in general, have to be concave up to
satisfy condition 4) of proposition 1. The approximation
based matching function will then be maximum at
infinity yielding infinite registration error on each and
every registration.

A meaningful upper bound is gained with
knowledge of the maximum possible registration error.
In most practical systems registration errors are usually
constrained to be less than some known maximum. For
registration systems that permit large registration
errors have not accomplished their purpose and are of

little use. So for most registration systems condition 4)
of proposition 1 need only apply for the interval of
registration shifts that produce errors less than this
maximum. In which case the procedure will most likely
result in a meaningful upper bound.

A typical matching function has been decomposed
into signal and noise components which are shown in
Figure 1. For such a matching function the registration
system would likely be operating at signal to noise
ratios that confine the global maximum to the main
lobe of the signal component. The parabolic signal com-
ponents that yield upper and lower bounds on the vari-
ance of registration are also shown in Figure 1 for the
case where the peak of the matching function of
interest is known to occur in the interval (Xr_,X7,).

The curvature of the parabolic signal components
yielding a bound can be obtained quite easily from a
graph of the slope (with respect to registration shift) of
the signal component versus registration shift. Such a
graph is illustrated in Figure 2. Note that a parabolic
signal component has a slope proportional to registra-
tion shift and appears as a straight line. This line must
cross zero at the shift of correct registration (denoted
by & in Figure 2) since the parabolic signal component
is an even function about that shift. The curvature of
the parabolic signal component is simply the slope of
the line. If the line passes under (over) the slope of the
signal component throughout the interval of interest,
denoted (X7_,X7;), then the slope of the line is the cur-
vature of a parabolic signal component that yields a
smaller (larger) registration error. It is clear from pro-
position 1 that the curvature of the parabola yielding
the lower (upper) bound should be as small (large) as
possible to provide the greatest (least) lower (upper)
bound.
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Figure 1. Parabolic Approximations to Matching Func-
tion.
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Figure 2. Matching Function Components and Approxi-
mations in the Derivative Space.

Some insight into the registration errors incurred
by the approximated and the original matching func-
tions can be gained by plotting the negative of the
slope of the noise component in Figure 2. The max-
imum of the matching function occurs at the point
where the slopes of the noise and signal components
cross. For the particular noise component of Figure 2
the registration errors for the three matching functions
illustrated are denoted A, 6, and Ay

If it is assumed that the matching function has
the same signal component for each and every registra-
tion, as is often the case, then the slopes of the lines
indicated in Figure 2 are the curvatures of the para-
bolic signal components that will provide greatest lower
and least upper bounds on the variance of registration
€error.

Ii. THE MODEL

A block diagram of the model to be analyzed is
shown in Figure 3. At the heart of the system is the
registration processor. This processor is presented with
the sampled form of two signals referred to as the refer-
ence and registrant signals. The reference signal is a
continuous analog signal consisting of a sample func-
tion &(z), from a signal source, corrupted by a sample
function n,(z), from an additive noise source. The regis-
trant signal is also a continuous analog signal consisting
of a shifted version of s(z) (shift is &), corrupted by
sample function ny(z), from an additive noise source.
The objective of the registration processor is to take
the sampled form of the reference and registrant signals
and obtain an estimate of the shift or misregistration §
on a sample function by sample function basis. Both
the estimated misregistration, 5, and the registration
error, (6-6), are random variables. The variance of the

registration error is taken as a indicator of the perfor-
mance of the registration processor and is therefore the
prime quantity of interest.

S(x)
MISREGISTRATION
(SHIFT §)
+ y +
n,(x) —_:CD " Na(x)
SAMPLERS

REGISTRATION
PROCESSOR

3

Figure 3. Registration System Model

In analyzing the registration model the following
assumptions are made. The analog signal &(z) is
assumed to be a sample function from an ergodic, band
limited (low-pass) periodic stochastic process with
known power spectrum. The analog noise n,(z) and
ny(z) are assumed to be sample functions from a sta-
tionary, band limited (low-pass), periodic, stochastic
process with known power spectra. It is assumed that
the signal and noise are periodic with identical periods
and in addition the signal and both noise sources are
assumed independent.

In sampling the reference and registrant signals it
is assumed that the samples are taken simultaneously
at a rate harmonically related to the common period of
the signals being sampled. Consequently, exactly an
integer number of samples, M, are collected during each
period of the signals. As is common in discrete analysis
the sampling interval is assumed to be one unit of z
without loss of generality. The sampling rate is
assumed to be sufficiently rapid so that the Nyquist cri-
terion for the low-pass signals being sampled is
satisfied.

As previously mentioned the registration processor

estimates the misregistration 6. This estimate is deter-
mined by cross-correlating the continuous reference and
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registrant signals and taking the value of shift which
achieves a maximum value for the cross-correlation
function as & the estimate for é (i.e. cross-correlation is
used as the matching function). This means that the
estimated misregistration 6 can assume a continuum of
values as can the registration error (8-6). The ability of
the processor to obtain a continuum of estimates for &
from discrete samples of the reference and registrant
signals stems from the assumptions made regarding sig-
nals and sampling rate, which eliminate aliasing and
permit an exact analytical expression for the signals in
terms of their samples.

A comment appears in order regarding the
assumption that the signal as well as the noise sample
functions are periodic. In practical signal matching
applications signals must ordinarily be truncated,
resulting in edge effects for such operations as correla-
tion. Assuming that the signals are periodic is simply
one method of handling these edge effects and appears
as valid as other commonly used methods such as pad-
ding the functions with zeros. The assumption that the
signals are periodic has the distinct advantage of
greatly simplifying the theoretical analysis, primarily
because it fits well with the natural periodicities gen-
erated by discrete transform techniques.

Some comments regarding the generality of the
model in Figure 3 conclude this section. Since signal
and noise are characterized by their power spectra
linear operations which simply modify these spectra are
readily included in the model. In addition the model
can accommodate determination of variance of registra-
tion error for ”image like” signals which change with
time. This is accomplished by setting n,(z) to zero and
letting ny(z) account for the change in the "image like”
signals. Thus the model in Figure 3, which at first
glance appears quite restrictive, can in fact handle a
variety of situations.

IV. APPROXIMATION BASED VARIANCE

This section contains the derivation of an expres-
sion for the variance of registration error for a match-
ing function based on a parabolic signal component.
The resulting expression will be of use in calculating
the lower and upper bounds on the variance of registra-
tion error for the registration system model of Figure 3.

First the matching function of the registration pro-
cessor, which is the cross-correlation function, is
analyzed and expressed in terms of the sampled refer-
ence and registrant signals. The matching function is
then broken into a signal and noise component. The
signal component is approximated with a parabola and
an expression for the variance of registration error is
found using this approximation.

A. MATCHING FUNCTION

The matching function, which is the cross-
correlation function p(z), used for a particular registra-
tion is a sample function from a stochastic process.
Each sample function p(z) is related to the sample func-
tions of the signal and the noise by

M
pla) = [ (sy)+m(y) (s(y+2z-6)+ny(y+2)) dy, (1)

where M is the common period of the signal and the
noise.

Since the signal and noise are low-pass periodic
functions they can be expressed by a finite Fourier
series expansion. Since they also satisfy the Nyquist cri-
tera the only possible non zero Fourier components are

2(:, k=0,1,2, - - - ,M;l (Throughout

this paper it is assumed M is an odd integer. The
theory applies for M even providing all occurrences of

at frequencies

are changed to -1;14.) The integrand of (1) being

the product of two such functions has possible non zero

Fourier components at  frequencies 217; ’
k=012, - - - ,2%1—. Using the identities
N onk { Mcost, k=0
fo 005(7314' 9)dy =\ o otherwise and (2]
- Sk { Mcosf, k=0,+M,+2M, - - -
Zocos(—ﬂ-m +0) =1 o otherwise, (20)

where k and M are integers, (1) can be transformed into
a mathematically discrete form given by

p(x) = 33 ( slm) + my(m))( s(m+2-8) + nofm+2)) .(3)

m=0

It must be emphasized that under the given
assumptions the computationally convenient discrete
form of (3) gives exactly the same values for p(z) as the
continuous form given by (1) for all values of the shift
parameter z. This means p(z) can be evaluated for the
continuum of real z in terms of the sampled values of
the reference and registrant signals. Therefore the value
of z that maximizes p(z) can be found exactly.

The matching function given in (3) is separated
into a signal component p,(z) and noise component
pa(z) such that

p(z) = pf2) + pola) - (4)
The signal component is given by
M-
pla) = 3 s(miso(m+2-0) (%)
m=0

and the noise component is given by
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palz) = Aﬁl{s(m)mz(m+z) + ny(m)s(m+2-6)
o

+ ny(m)ng( m+z)} . (8)

The signal component p,(z) is an even function
about z==4. This is shown by expressing (5) as an
integral using the same reasoning that equates the right
sides of (1) and (3) and using the periodic properties of
the integrand. Thus p,(z) satisfies condition 2) of pro-
position 1 and facilitates the use of the use of the previ-
ously described procedure to gain bounds on the vari-
ance of registration error.

B. VARIANCE OF APPROXIMATED MATCHING
FUNCTION

In this section an expression is developed for the
variance of registration error for an approximation
based matching function. The approximated matching
function, p(z), is given by

pz) = b2) + po(2), ()

where p(z) is a parabolic approximation of the signal
component p,(z). The parabola has curvature C and is
given by

p2) = C(z-0)% (8)

If one assumes p(z) is unimodal, having one and
only one maximum, then the location of its maximum
can be found by setting the derivative of p(z) to zero
and solving for z. Combining (7) and (8) and letting A
be the value of z which makes the derivative of p(z)
zero results in the transcendental equation

_ . Pa(8) (0)
2C '’
where for notational convenience p,'(A) is used to indi-
dpa(7) . ,
cate . The use of a prime to designate a
dz zasA

derivative will be used throughout this paper.

Assuming p(z) is unimodal, (9) will have a unique
solution and A is a legitimate random variable. The
mean and variance of the registration error, (A-6), can
therefore be calculated. Evaluating the derivative of (6)
at 7=A and substituting the result into (9) yields

N 5 1 M-1
A-0=—- ——
2C’E

m=0

{ o(m) ng!(m+A) + ny(m) & (m+A-5)

+ my{m) n2’(m+A)}. (10)

Taking the expectation of (10) and interchanging
the order of expectation and summation operators gives

HA-6]=- ==

M-1

5 { Bl (mt2))

m=0

+ Elny(m) ¢ (m+A-0)] + Elny(m) ng! (m+A) ]}. (11)

It is believed that independence of the signal and
noise holds for the transcendental equation of (11) even
thought it has not been formally proven’. Using
independence, the expectation of the products on the
right side of (11) can be written as the product of
expectations. Each term in (11) is zero since one factor
in each term is the expected value of a random variable
defined on the derivative of a sample function from a
stationary stochastic process and that factor must be
zero. This establishes the mean of the registration error

ElA-6]=0. (12)

The variance of registration error is given by
E[(A-6)% since the mean of A-§ is zero. It is
obtained by taking the expectation of the square of
(10). The square of (10) produces an equation with nine
terms under a double summation on its right side.
Using the same procedure and reasoning as in the
development of (11), the expected value of six of these
terms is zero. The variance of error expression becomes

> S Bl (e 8) s (1)

4 C? 1 Zom=0

2

%A

+ E[ny(m)s (m+A-6)n,(h)d (h+A-6)|

+E1nl(m)n2'(m+A)nl<h)nz'(h+An}. (13)

In evaluating the expectations in (12) it is helpful
to make a change of variables, letting p=h-m. The lim-
its for the summation over the new variable, p, are
independent of m since each term under the double
summation in the new expression, formed by replacing
h with p+m, is periodic in p with period M. This allows
the limits for the summation over p to be fixed at 0 and
M-1. Using independence of the signal and noise
sources the expectation of the new expression is
evaluated in terms of the autocorrelation functions of
the processes that generate the signal and the noise.
These function are only dependent on p permitting the
summation over m to be carried out with the result

z{ R{p)Ry"(p)

o

A 402

- Ry(p)R"(p) - Rl(p)Rz"(p)}, (14)

* Others have made the same assumption in similar
transcendental equatlons(‘)(z)(“)(5)(5) P
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where R,(z), R,(z) and Ry(z) are the autocorrelation
functions of the processes gencrating s(z), n,(z) and
ny(z) respectively.

The variance of registration error can be expressed
in terms of the power spectra of the signal and the
noise. Since the processes generating the signal and the
noise are periodic with period M their power spectra are

a sequence of impulses spaced by % Let S(k), Ny(k)
2rk

71
, in the processes generating the sig-

and N,(k) be the power at frequency
=0,12, -+ » 2
nal, reference noise and registrant noise respectively.
S(k), N;(k) and Ny(k) are then given by the kth
coefficient of the cosine Fourier series of the respective
autocorrelation functions. Replacing the autocorrela-
tion functions in (14) with their cosine Fourier series
representation produces a triple summation containing
the S(k), Ny(k) and Ny(k). Summing over p and using
(2b) reduces the triple summation to a single summa-
tion. The expression for the variance of registration
error becomes

+ S(RNG(K) + Nl(k)Nz(k)}. (15)

For the special case where the signal and noise have the
same spectral shapes (15) can be rearranged to yield

M-1

—— 2
2_ _1 (2SNR+1 2 [27rk S(I2 16
’A T gt snR? Eo ) SO (1

where SNR is the signal power to noise power ratio of
the reference and registrant signals.

V. BOUNDS ON VARIANCE

Both lower and upper bounds on the variance of
registration error can be calculated using (15). All that
is required is the curvatures of the parabolic signal
components that yield the lower and upper bounds.

The lower bound is found first. The approximation
based matching function yielding the lower bound must
satisfy the conditions on my; of proposition 1 while the
matching function of interest must satisfy the condi-
tions on ms, of proposition 1. Conditions 1), 2) and 3)
are satisfied for any curvature. Condition 4) is satisfied
providing the slopes of the signal components satisfy
the inequalities

pl(2) < p/(2), 6< 2<Xp, and (17a)
i’ol(z) 2 p,’(z), ‘YT— S r < 67 ll7b)

where it is known that the peak of the matching func-
tion of interest is maximum in the interval (X7, Xr,).

In finding the curvature of the parabolic signal
component that satisfies (17a) and (17b) it is helpful to
establish that the slope of p,/(z) is minimum at z=4.
Consider the expression for p,(z) given by (5). The right
side of (5) can be expressed in terms of the power spec-
trum of the signal. This is done by replacing &(m) and
s(m+2-6) with their cosine (amplitude and phase)
Fourier series representation which resuits in a triple
summation. Since the signal is ergodic the square of the
2

M °
equal to 2.5(k). Using trigonometric identities, summing
over m, and using (2b) reduces the triple summation to
a single summation given by

Fourier amplitude coefficient for frequency

M-1

2
pla) = M3 S(Heos( 2 (2-9)). (18)

k=0
Taking the derivative of (18) twice yields

M,
2

piMa) = -M EO[%}“- § (Heos((2E(2-9)), (19)

where p,''(2) is the slope of p,'(z). Since S(k) is greater
than or equal to zero for all kit is clear from (19) that
=4 minimizes p,'’(z).

To satisfy (17a) and (17b) in the vicinity of correct
registration shift (i.e. z near 8) the slope of p,'(z) must
be less than or equal to p,'’(8). As it was established
p.)'(z) is minimum at z=§, if p,'(z), which is a straight
line crossing zero at z=§, has slope p,''(6) then (17a)
and (17b) are satisfied for all z. Since p,/(#) could not
have a greater slope and still satisfy (17a) and (17b) for
z near 6, p,/'(6) is the slope of p,(z) that yields the
greatest lower bound.

The curvature that yields the greatest lower
bound, Cj, is found by taking the derivative of (8)
twice and substituting p,''(6) for p,''(z) and is given by

"
c, = P (6). (20)
2
Evaluation of (19) at z=6 and substitution into (20)
yields an expression for the curvature in terms of the
power spectrum of the signal given by

M-1 2
M 2.( 2rk
"t

It is pointed out that C; does not depend on the
registration error being constrained to less than some
maximum. It is also pointed out that curvature Cj is
the coefficient for the second term in the Taylor series
expansion of p,(z) about z=6. The matching function
used to calculate the lower bound is the same matching
function yiclded by the Taylor series approach. The

1985 Machine Processing of Remotely Sensed Data Symposium

298



lower bound should therefore approach the variance of
registration error for the matching function of interest
when the registration errors are small.

An upper bound on the variance of registration
error can be expressed in terms of a lower bound on the
variance of registration error. From (15) it is observed
that the variance of registration error for a parabolic
signal component is inversely proportional to the curva-
ture squared. An upper bound on the variance of regis-
tration error is therefore given by

2
o = 0L2£g‘2‘» (22)

Cy
where o;? and 0,2 are an upper bound and a lower
bound on the variance of registration error and Cy; and
C;, are the curvatures of the parabolic signal com-
ponents used to obtain o;? and o2 respectively.

Consider the ratio of the slopes of the parabolic
signal components with curvatures Cy and C;. Using
the derivative of (8) this ratio is given by
2 Cifz - 9§) _ & (23)
2 CL(.’C - 6) CL
From condition 4) of proposition 1 for z>§ the slope of
the parabolic signal component yielding the upper
bound must be greater than or equal to the slope of
the signal component of the matching function of
interest. The least upper bound on the variance of
registration error is achieved if the two slopes are equal

for some possible z. The ratio —C—U where Cj is the cur-
L
vature yielding a least upper bound is therefore given

C (z
—_ = max !;#, XT_ <z< XT+ ’ (24)
CL z P (I)
where p,/(z) is the slope of the parabolic signal com-
ponent that has curvature C; and where the peak of
the matching function of interest is known to occur in
the interval (X7, X7, ).

The curvature ratio can be expressed in terms of
the power spectrum of the signal. Using the derivative

of (18), derivative of (8) and (21) yields

M-1
% é}o 2—;';] S(K) sin(2ZH29) A;‘é )
7Ry [ZER ’
B EAED
k=0
Xp <2< Xpy. (25)

VI. EXPERIMENTAL RESULTS

The lower and upper bounds on the variance of
registration error are plotted in Figures 4 and 5 for a
variety of signals registered according to the model in
Figure 3. In each case the stochastic processes generat-
ing the signal and the noise have the same power spec-
tra. The domain of the signal to noise ratios used in
Figures 4 and 5 was restricted so that the peak in each
matching function is sure to be on the main lobe of the
signal component between the points X7 and Xp,
where X7 and Xg, are the two solutions in z to

36
pl2)=—7—

The correlation interval M was chosen 128. This
yields power spectra with mass points at frequencies

% for k¥=0,1,2, - - - ,63. Four signal power spectra
are used:
1) Low-pass
0 k=0
Sk)={11<k<L15
016 <k<63
2) Band-pass
00<L k<23
S(k)=11 24 < k<39
0 40< k<63

3) Triangular

0 k=0
SH=) .
1-— 1< k<63
63

4) Contrived

0 k=0

1 1<k<15
SH=1o 16< k<62

15 k=63

The first three spectra represent a variety of situa-
tions that could well be encountered in practice. Figure
4 contains graphs for these cases. The lower bound is
plotted using (16) and the upper bounds using (22).
The fourth spectrum was contrived to make the upper
bound on the variance of registration error infinite. The
lower bound for this contrived case has been plotted in
Figure 5 using (16).

The validity of the bounds is tested using simula-
tion based estimates of the actual variance of registra-
tion error for several signal to noise ratios. Each vari-
ance estimate was calculated using results of 25,000
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0.7 © STANDARD DEVIATION OF REGISTRATION
ERROR BASED ON SIMULATION
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Figure 4. Bounds on Standard Deviation of Registration
Error

registrations. The estimates are shown in Figures 4
and 5 as small circles.

It is pointed out that the variance of registration
error used for the lower bound is also the variance of
error obtained using the Taylor series approach to best
approximate the matching function of interest. It is
therefore not surprising that the experimentally
obtained points fall very near the lower bound at small
signal to noise ratios.

Some comments regarding the computational
efficiency of the bounding procedure are in order. A
VAX 11/780 digital computer was used. The simulation
based data required .26 seconds for each registration
and 6500 (25000X0.26) seconds for each estimate
shown in Figures 4 and 5. An upper and lower bound
pair of points were obtained in .07 seconds.

It is also interesting to note that the number of
registrations required in one simulation for the stan-
dard deviation of the estimate to be one quarter the
difference between the upper and lower bounds is about
64, 200 and 800 registrations for the triangular, low-
pass and band-pass spectra respectively.

O  STANDARD DEVIATION OF REGISTRATION
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Figure 5. Lower Bound on Standard Deviation of Regis-
tration Error for Contrived Spectrum.

VII. CONCLUDING SUMMARY

Upper and lower bounds on the variance of regis-
tration error can be calculated for registration systems
where small error analysis techniques are used to obtain
an approximate variance of registration error. These
bounds are useful in establishing the accuracy of the
approximate variance. B

The closeness of the upper and lower bound is in
general affected by the maximum possible registration
error. The bounds approach each other as the max-
imum possible registration error decreases.

Bounds were calculated and tested against simula-
tion based data for the registration system model of
Figure 3, which uses a cross-correlator as a matching
function. The lower bound for a cross-correlator match-
ing function was shown to be independent of the range
of possible registration errors.

The upper and lower bounds were found to be
meaningful for a variety of practical power spectra.
However, a spectra was contrive to yield a meaningless
upper bound. Even thought there are situations where
the upper bound is not meaningful the results indicate
that for most practical situations the upper and lower
bounds will be useful.
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