Reprinted from

Eleventh International Symposium
Machine Processing of
Remotely Sensed Data
with special emphasis on

Quantifying Global Process:
Models, Sensor Systems, and Analytical Methods

June 25 - 27, 1985

Proceedings

Purdue University
The Laboratory for Applications of Remote Sensing
West Lafayette, Indiana 47907 USA

Copyright © 1985
by Purdue Research Foundation, West Lafayette, Indiana 47907. All Rights Reserved.
This paper is provided for personal educational use only,
under permission from Purdue Research Foundation.
Purdue Research Foundation



AGRICULTURAL APPLICATIONS FOR THERMAL
INFRARED MULTISPECTRAL SCANNER DATA

RAMONA E. PELLETIER, MICHAEL C. OCHOA

National Aeronautics and Space Administration
National Space Technology Laboratories
NSTL, Mississippi

BENJAMIN F. HAJEK

Agronomy Department, Auburn University
Auburn, Alabama

ABSTRACT

Remote sensing in agricultural re-
search has traditionally been focused on
the reflective portion of the spectrum.
Recent advances in thermal infrared re-
mote sensing are adding a new dimension
to agricultural studies through digital
image analysis. This paper will briefly
discuss preliminary findings on the
utility of the Thermal Infrared Multi-
spectral Scanner (TIMS) for several agri-
cultural applications in plant studies,
soil studies, hydrologic and topographic
concerns, inventory and monitoring of
conservation and other man-induced agri-
cultural practices, and cartographic
feature extraction. Multiple sets of
TIMS data were acquired over a highly
agricultural test site in the Coastal
Plain region of southeast Alabama. Data
sets were acquired during the spring for
maximum bare soil exposure, however, a
large percentage of fields had maturing
small grain crops or very young corn en-
abling studies of both vegetative and
soil thermal responses. Both predawn and
afternoon data sets were obtained to
evaluate minimum/maximum diurnal effects
on thermal response and each predawn-
afternoon pair was collected at three
spatial resolutions (5, 10, and 30
meters) to analyze the effect of cell
size on data information content.
Multiple-band digital thermal data of
this type should prove quite useful in
several agricultural and global process
models.

I. INTRODUCTION

Much of traditional remote sensing in
agricultural research has been limited to
the reflective portion of the spectrum.
However, advances in thermal infrared re-
mote sensing are adding a new dimension
to image analysis. Terrestrial surfaces
including soil, water, vegetation, and
man-made materials exhibit different

thermal (Buettner,

1965).

spectral responses

Variations in moisture content, tex-
ture, bulk density and porosity are
important in influencing remotely sensed
soil thermal spectral responses (Meyers
and Heilman, 1968). Of these, moisture
content is one of the more important
factors affecting temperature and emis-
sivity in both soils and vegetation and
clearly the means by which hydrologic
features are identified. Blanchard, et
al., (1974) found that most soils had
emissivities of 0.7-0.9 compared to 1.0
for an ideal blackbody. Water bodies
approach the emissivities of blackbodies
while vegetation is often considered a
"grey body" with emissivities near 0.95.

Knowledge of the factors influencing
soil and plant thermal responses and the
way they are manifested in remotely
sensed data can be very instructive in
understanding and monitoring a variety of
agricultural conditions and processes.
Models can be developed which can predict
diurnal surface temperature changes
(Kahle, 1977) monitor soil moisture con-
ditions (Idso, et al., 1975) or plant
canopy temperatures for stress (Myers, et
al., 1970). Other procedures can utilize
remotely sensed data to identify conser-
vation practices (Pelletier, 1985) and
study topographic features (Mahrt and
Heald, 1981).

Agriculturally-related applications
of data acquired with the Thermal Infra-
red Multispectral Scanner (TIMS), an air-
borne thermal sensor operated by NASA/
NSTL, will be discussed in this paper.
The 8.2-12.2um range of the sensor is
nominally covered by six bands (8.2-8.6
um), (8.6-9.0um), (9.0-9.4um), (9.4-10.2
ym), (10.2-11.2um), and (11.3-11.6um).
The sensor has an instantaneous field of
view of 2.5 milliradians; a total field
of view of 76 ; and a ground resolvable
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temperature of approximately 0.2°C, de-
pending on the band. In addition to the
work, conducted by Pelletier (1985) in
identifying conservation practices a
number of other vegetation studies have
been conducted using the TIMS (Anderson,
1983; Anderson, 1984; and Sader, 1984) as
well as archeological investigations
(Sever, 1983). Kahle, et al. (1983) has
also investigated the use of the TIMS
sensor for geological applications and
continues research in this area today.
These geologic applications with the TIMS
should prove very instructive in future
soils research with this sensor.

II. APPLICATIONS

Multiple applications exist for plant
studies, soil studies, hydrologic and
topographic concerns, inventory and moni-
toring of conservation and other man-
induced agricultural practices, and
cartographic feature extraction. This
paper will discuss the utility of Thermal
Infrared Multispectral Scanner data for
several applications in agricultural
landscapes. However, many of these
applications may prove useful in other
landscapes as well.

A, SITE AND DATA DESCRIPTION

The research reported here are pre-
liminary findings from the use of the
TIMS over a test site in the Coastal
Plain region of southeast Alabama. More
than half the hectarage in this area is
in row crops and pasture with corn, small
grains, soybeans and peanuts representing
the majority of the land planted to row
crops. The predominating soil types be-
long to the Paleudult great group and are
represented by the Dothan (Plinthic
Paleudult), Orangeburg (Typic Paleudult),
and Red Bay (Rhodic Palendult) series
which are all deep, well-drained upland
soils with sandy loam surfaces and sandy
clay loam subsurface horizons and low in
organic matter. The land is very subject
to erosion and most fields have been
terraced in recent decades.

Data sets were acquired during the
spring (early May) for maximum bare soil
exposure, however, a large percentage of
fields had maturing grain crops or very
young corn enabling studies of vegetative
thermal responses as well as soil re-
sponse. Both predawn and afternoon data
sets (afternoon first and the following
morning) were obtained to evaluate mini-
mum/maximum diurnal effects on thermal
response. Each predawn-afternoon pair
was collected at three spatial resolu-
tions (5, 10, and 30 meters) to analyze

the effect of cell size on data informa-
tion content. All data were processed
with the Earth Resources Laboratory Ap-
plications Software (ELAS), (Junkin, et
al., 1980).

B. PLANT STUDIES

During the heat of the day water
bodies in thermal imagery will generally
appear as the coolest (darkest) features
in the scene (Figure 1). Thermal re-
sponse will increase next with dense
forested canopies, peak-season rowcrops
and pasture areas while soil response can
be quite high but more variable within a
field due to factors discussed later.
During the night (actually just predawn)
the water bodies in the thermal imagery
will generally appear as the warmest
(brightest) features in the scene fol-
lowed closely, in this case, by paved
asphalt roads (Figure 2). The rest of
the scene, however, displays considerably
less contrast than the daytime image yet
the feature/thermal response relation-
ships continue to appear reversed. These
relationships are caused by differences
in thermal inertia such that water bodies
exhibit a very high thermal inertia while
soils have a much lower thermal inertia
and vegetation and mixed classes between
vegetation and soil will experience
intermediate phases of thermal inertia
(Pratt and Ellyett, 1979; Price, 1977).

Crop/plant vigor and canopy density
can often be inferred from thermal data
with assistance from training samples.
Mature crops ready for harvest and dis-
eased plants or those under water stress
are more susceptible to extremes in temp-
erature caused by diurnal fluctuations
than healthy, vigorously growing plants.
When night and day thermal images are
overlaid, a large difference in thermal
response can be used to differentiate
mature or stressed plants from healthy
vegetation of the same type which have
small differences in temperature. In
some cases these thermal response differ-
ences are indicative of different crop/
plant types and may be valuable for clas-
sification purposes. This relationship
is illustrated by the fields near posi-
tion A in Figures 1 and 2. Other ob-
servations indicate that low density veg-
etation levels (e.g., very young crops),
though they may still appear as bare soil
within the reflective portion of the
spectrum, can often be determined from
TIMS data (example of adjacent fields
near position B in Figures 1 and 2).
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C. SOIL STUDIES

In order to understand thermal prop-
erties of soils one must understand those
factors that affect soil temperature; (1)
those that influence the amount of heat
available at the soil surface and (2)
those that influence the dissipation of
the available heat (Hanks and Ashcroft,
1980). Soil color and soil mulch, which
are largely dependent upon mineralogy and
organic matter content, are the major
factors that influence the amount of heat
received by the soil surface, while water
content and bulk density are those pri-
mary factors responsible for heat dissi-
pation within the soil.

While porosities often vary from 30
percent for fallow soil to near 60 per-
cent for freshly tilled soil (Chudnovski,
1962), Moga (1962) observed that heat
conduction drastically decreased when
porosity increased above 30 percent.
Such changes in porosity plus moisture
content could be responsible for the
greater variability in temperature over a
bare field than a vegetated one as ob-
served by Millard et al., (1981). This
kind of vargation was reported to be as
large as 6 C in studies conducted in
California by Hatfield et al., (1982).
Position C on Figures 1 and 2 illustrate
two bare soil fields - the one on the
bottom more recently plowed (higher mois-
ture content and higher porosity) than
the field on the top.

While the relative effective radiant
temperature relationships for vegetated
areas within a band remain near constant
between bands the thermal spectral re-
sponse from soil may vary. Mineralogy
can in certain cases be responsible for
significant variation between bands.
Erosion gullies comprised of high quartz
content sandy materials exhibit low ther-
mal response in bands 1 and 3 due to the
reststrahlen band while having a high
response in band 5 (Figures 4 and 5 -
position a). Sand textured material in
eroded fields illustrate the same rela-
tionship (Figures 4 and 5 - position b).

The relationships between channel 3
(band 3) and channel 5 (band 5) in Figure
4 (Day) are illustrated by a scattergram
in Figure 6. Vegetation stretches along
the A axis, bare soil clusters near C and
low density level vegetated fields
cluster near B. As the season progresses
B and C population nodes would subside
and trend nearer to A. Figure 7 illus-
trates the same relationship between
channel 3 and channel 5 of the night set
in a population scattergram. In this

scattergram, however, vegetation and
soils fall closely together at A while
the water stands out at B.

In addition to the importance of
relative thermal response changes for
soils study 1is the determination of
absolute temperature values. The know-
ledge of absolute temperature (possible
with atmospheric correction of the ther-
mal data) can be useful in determining
planting date. Absolute temperature
values obtained from digital thermal data
are also useful in studies of evapotrans-
piration.

D. HYDROLOGIC AND TOPOGRAPHIC CONCERNS

Near-surface soil moisture patterns
and true hydrologic features, on a large
scale, can also be identified with ther-
mal data. The presence of water in the
soil tends to stabilize the temperature
gradient causing moist soil to appear
cooler than surrounding areas in the day
and warmer during the night. With this
source of digital data alone and in situ
measurements, or in addition to reflec-
tive digital data, hydrologic modelling
takes on a new dimension. Figure 8
illustrates 30 meter resolution afternoon
data of the entire test site. This image
shows a good overview of the drainage
network at this scale, whereas larger
scale analysis and finer resolution as
illustrated in Figure 1 will show smaller
moisture patterns. Figure 9 illustrates
30 meter resolution predawn data of the
test site. In this image, water bodies
become a dominant feature, appearing
quite bright. Notice the water within
the river channel in the upper left plus
the warming influence of the soil mois-
ture immediately adjacent to the channel.
The medium-toned areas in the body of the
image are generally vegetated fields,
though moisture patterns are also notice-
able.

Topography can also have an effect on
thermal response. South facing slopes
will appear warmer than North facing ones
and hills will be more susceptible to
climatic effects than valleys. In Figure
9 the sharp drop in elevation along the
major stream networks allowed cool air to
settle in them since this area experi-
enced a fairly calm, unclouded night just
prior to the acquisition of this data.

E. CONSERVATION PRACTICE INVENTORY

Many conservation and agricultural
practices appear strikingly in thermal
data. Terraces are quite evident due to
a moisture differential in the soil (and
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subsequent temperature gradient), there-
fore altering spectral response either
directly from the bare soil itself, or
indirectly through a moisture stress
effect on the vegetated canopy. Figure 1
illustrates several terraced fields with
the warm (bright) areas being the crests
of terraces since they are drier than the
adjacent troughs). In Figure 2 the
wetter troughs appear warmer.

Other features important in conserva-
tion practice 1inventories are grassed
waterways and field drainage ditches
which, due to accumulation of soil mois-
ture, are also easily identified in ther-
mal data. Erosional gullies, as men-
tioned before, can often be identified in
thermal data when their mineral compo-
sition 1is significantly different from
the surrounding area.

F. CARTOGRAPHIC FEATURE EXTRACTION

Through a series of data enhancement
techniques, including principal component
analysis and high-pass band filtering,
many cartographic features can be en-
hanced and extracted. In addition to the
terraces, grassed waterways, field drain-
age ditches and erosional gullies noted
above, field hedgerows can often be
identified (Figure 10). Roads can be
classified and delineated from soil more
easily with thermal data than with re-
flective data due to the highly emissive
thermal properties associated with the
increased bulk density of asphalt road
material. Streams and open water bodies
are as easily delineated.

The feature extraction output derived
from such filtering procedures has great
potential use in agricultural models de-
veloped for field-scale analysis. In the
Universal Soil Loss Equation (USLE), for
example, man-induced topographic changes
such as drainage ditches, terraces, and
the slightly elevated areas along fence
rows must be considered along with
natural topography if they alter the
runoff direction by changing slope
length. Other uses of extracted hydro-
logic features could prove quite useful
in area-wide hydrology studies.

G. SPATIAL RESOLUTION

As with reflective data, as resolu-
tion cell size increases the information
content decreases. Figure 11 illustrates
a 10 meter afternoon image acquired with
the TIMS while Figure 12 illustrates a 30
meter afternoon image acquired over the
same area just minutes earlier. Most all
the features discernible in the 5 meter

data are maintained in the 10 meter data,
though the data has lost some definition.
The 30 meter data maintains basic field
outlines and tone but has lost all defin-
ition of terraces, gullies, and other
agricultural features which generally
have spacings less than 30 m. The only
suggestion of such features now exists in
the fact that the fields containing them
exhibit higher spectral variability than
the surrounding bare soil or dense forest
vegetation. Scattergrams from 30 meter
data also lack the well-defined charact-
eristic population nodes exhibited as in
Figures 3 and 6 (from 5 meter data) due
to the increased amount of mixed or
border pixels.

III. SUMMARY

While much of traditional remote
sensing in agricultural research has been
limited to the visible and reflective IR,
advances in thermal infrared remote
sensing are adding a new dimension to
image analysis. While a number of
broad-band thermal infrared sensors have
been developed and utilized in the past
the Thermal Infrared Multispectral
Scanner (TIMS) allows for narrow-band
analysis in the range of 8.2-11.6 um at
spatial resolutions down to 5 meters in
cell size. Due to the presence of
multiple bands, emissivities of 1land
surfaces may be calculated. While the
thermal response of many surfaces (e.g.,
vegetation) change only relatively be-
tween bands, important soil properties
can be determined through analysis of
band-to-band differences.
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Figure 1. Raw band 5(10.2-11.2 um),
5 meter - afternoon TIMS data.

Figure 2. Raw band 5(10.2-11.2um), 5
meter - predawn TIMS data.
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Night
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Figure 3. Scattergram of raw thermal
response values for channel 5 (10.2-11.2
um) 5 meter day vs. night TIMS data.
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Figure 4. Raw bands 1(8.2-8.6um),
3(9.0-9.4um), and 5(10.2-11.2um), 5 meter
- afternoon TIMS data.

Figure 5. Raw bands 1(8.2-8.6um),
3(9.0-9.4um), and 5(10.2-11.2um), 5 meter
- predawn TIMS data.
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Figure 6. Scattergram of raw thermal
response values for Channel 5(10.2-11.2
um) vs. Channel 3(9.0-9.4ym), 5 meter -

day TIMS data.
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Figure 7. Scattergram of raw thermal
response values for channel 5(10.2-11.2
im) vs. channel 3(9.0-9.4um), 5 meter -
night TIMS data.
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Figure 10. Linear feature extraction
from high-pass band filtered 5m, after-
noon TIMS data.

Figure 8. Raw band 5(10.2-11.2ym),
30 meter - afternoon TIMS data.

Figure 11. Raw band 5(10.2-11.2um),
10 meter - afternoon TIMS data.

Figure 9. Raw band 5(10.2-11.2um),
30 meter - predawn TIMS data.

Figure 12. Raw band 5(10.2-11.2um),
30 meter - afternoon TIMS data.
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