Signal Theory Methods in Multispectral Remote Sensing

David Landgrebe

Professor Emeritus of Electrical & Computer Engineering

Purdue University

Landgreb@ecn.purdue.edu

- Brief History of the field
- Some fundamentals of remote information
- Outline of spectral analysis methodology

Brief History

REMOTE SENSING OF THE EARTH

Atmosphere - Oceans - Land

1957 - Sputnik

1958 - National Space Act - NASA formed

1960 - TIROS I

1960 - 1980 Some 40 Earth Observational Satellites Flown

1967 NRC Summer Study on Useful Applications of Earth-Oriented Satellites

Panels on:

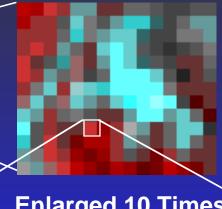
- Agriculture, Forestry, Geography
- Geology
- Hydrology
- Meteorology
- Oceanography
- Broadcasting
- Points-to-point Communication

- Point-to-point Communication
- Navigation & Traffic Control
- Sensors & Data Systems
- Geodesy & Cartography
- Economic Analysis
- Systems for Remote Sensing
 Information and Distribution

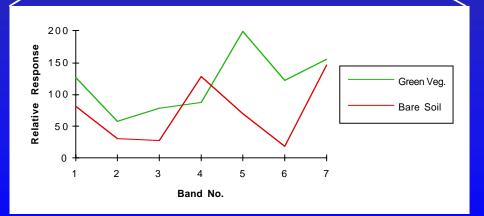
The Multispectral Concept

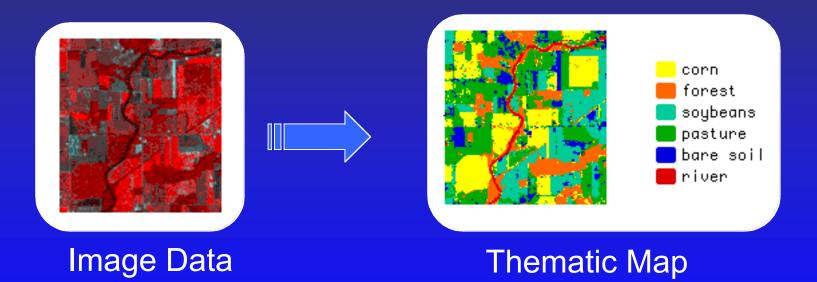


Thematic Mapper Simulated Color IR Image



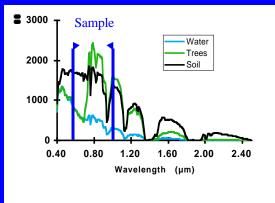
Enlarged 10 Times



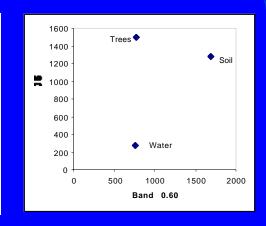


Data Representations

Image Space



Spectral Space



Feature Space

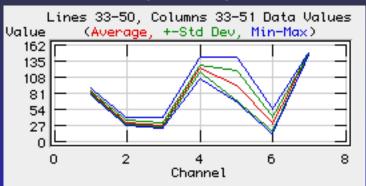
- Image Space Geographic Orientation
- Spectral Space Relate to Physical Basis for Response
- Feature Space For Use in Pattern Analysis

Example Data Presentations

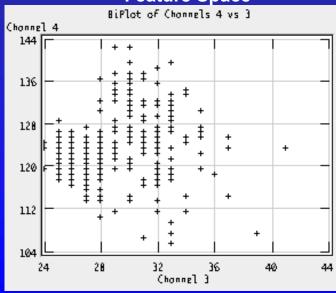
Image Space



Spectral Space

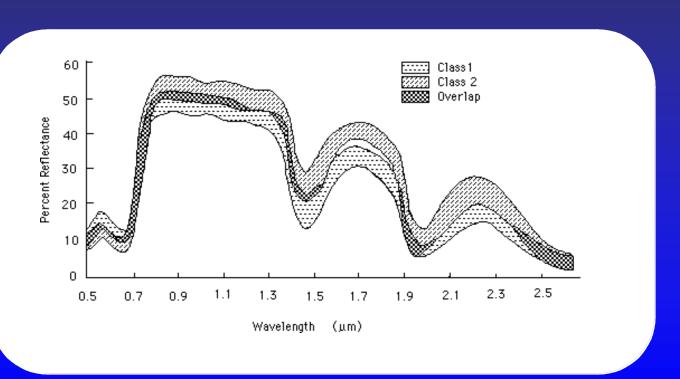


Feature Space

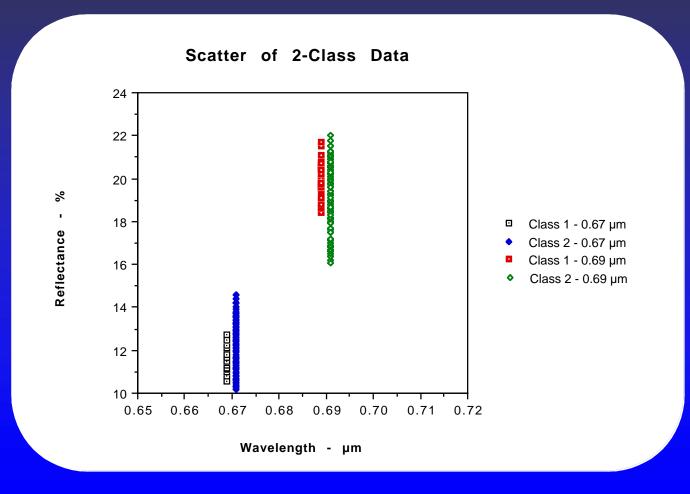


Vegetation in Spectral Space

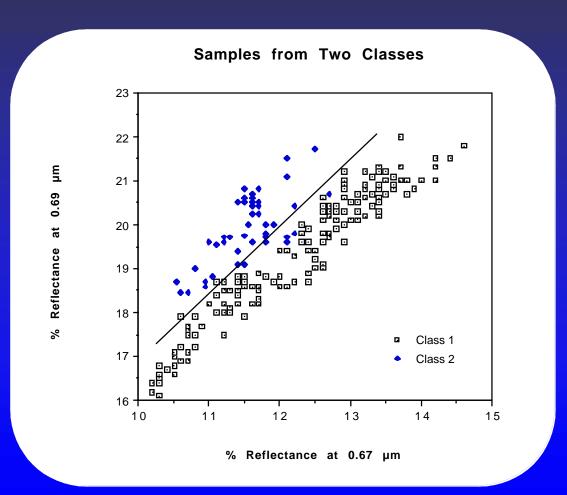
Laboratory Data: Two classes of vegetation



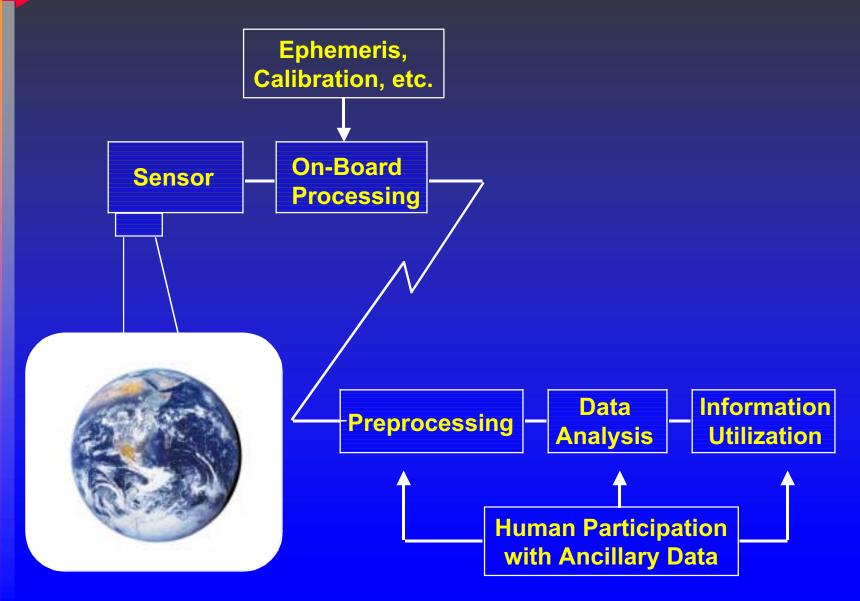
Scatter Plots of Reflectance



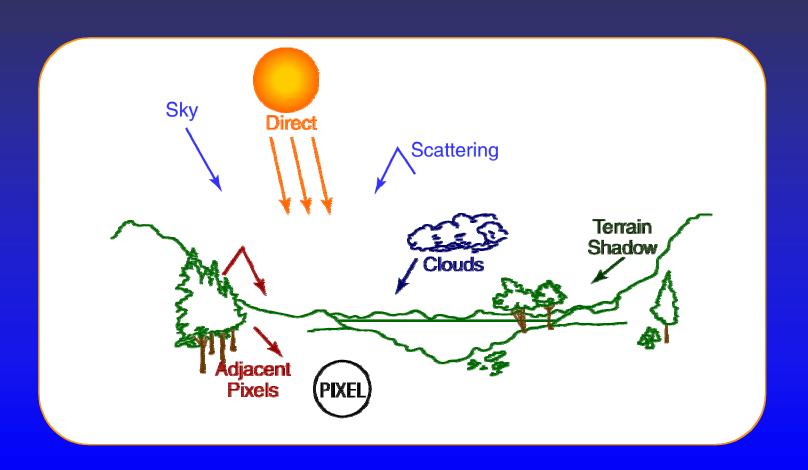
Vegetation in Feature Space



Systems View

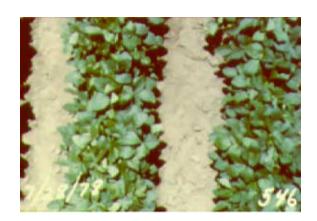


Scene Effects on Pixel

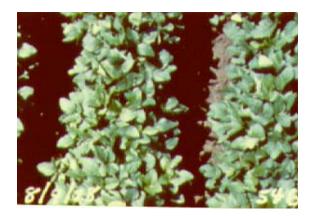


Sun Angle/View Angle Effects

Soybeans - 91 cm rows

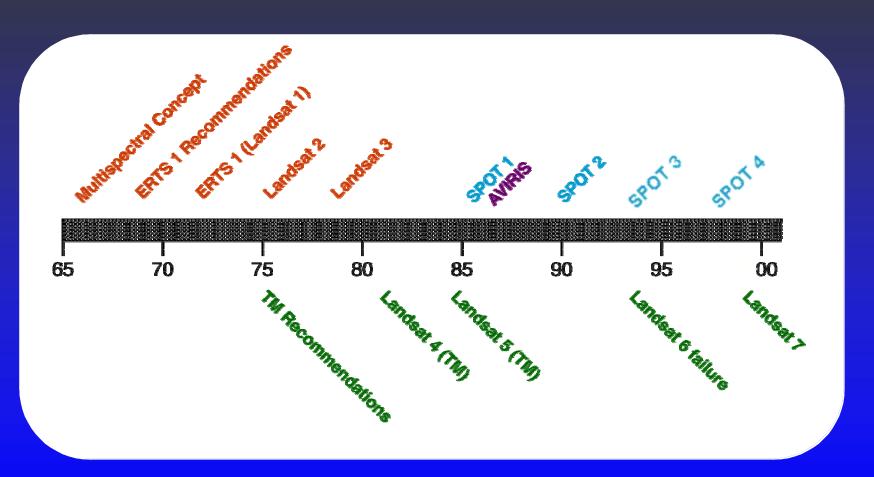


12:25 PM

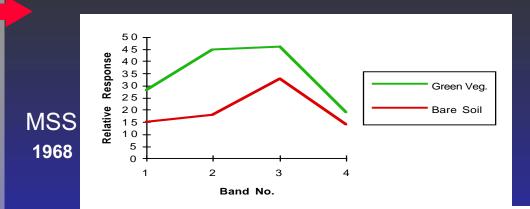


10:50 AM

Brief History-Land Remote Sensing

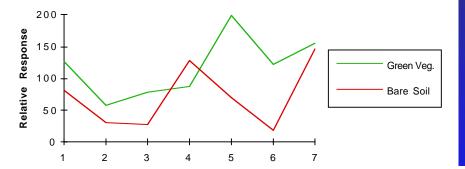


Three Generations of Sensors



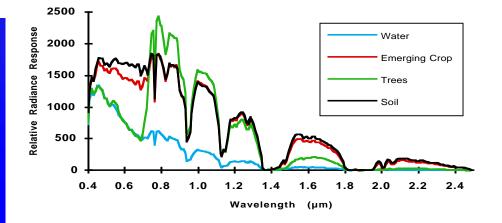
6-bit data 80 m pixels 4 bands

TM 1975



8-bit data 30 m pixels 7 bands

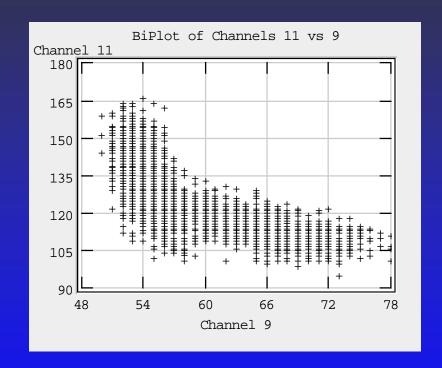
Hyperspectral 1986



10-bit data 20 m pixels ≈ 200 bands

Scatter Plot for Typical Data

Agricultural Area



- 8-bit data in 2 bands = $(2^8)^2 = 65,536$ cells
- About 3000 pixels in 1000 occupied cells

- Assume 10 bit data in a 100 dimensional space.
- That is $(1024)^{100} \approx 10^{300}$ discrete locations

Even for a data set of 10⁶ pixels, the probability of any two pixels lying in the same discrete location is vanishingly small.

Thus, in theory, everything is separable from everything.

But how?

Southern Corn Leaf Blight

SCLB Lesions

Infection begins at the bottom of the plant

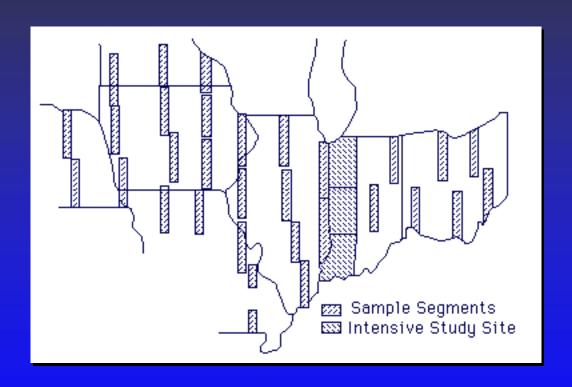
Blight Stages

Healthy Plants

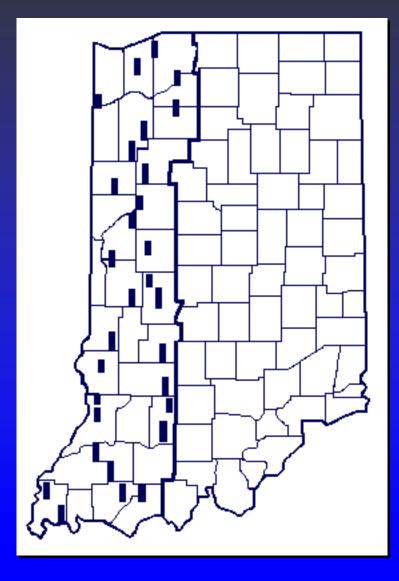
Moderate Blight

Severe Blight

1971 Corn Blight Watch Experiment Flightlines

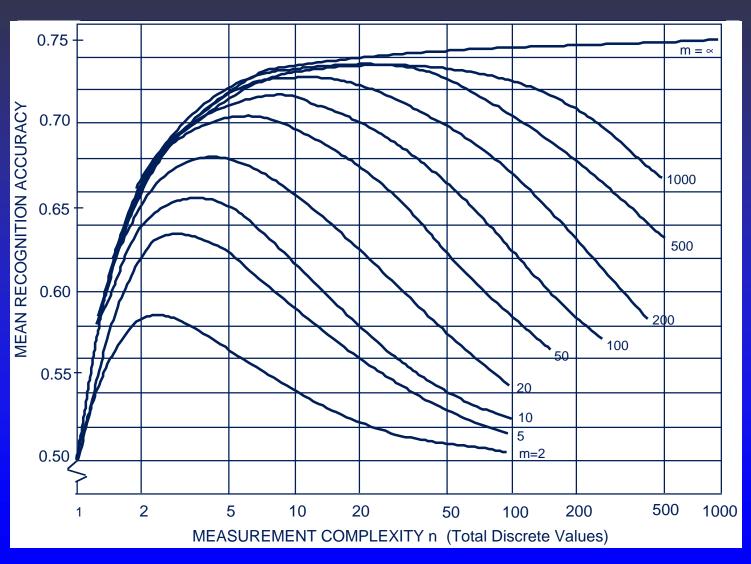


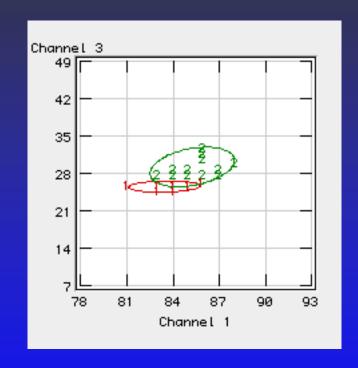
1971 CBWE Intensive Area Flightlines



- All segments flown & analyzed every two weeks throughout the growing season with a 13 band scanner
- Discrimination successful into three stages of blight:
 - ✓ Little or none
 - ✓ Moderate
 - ✓ Severe

Hughes Effect



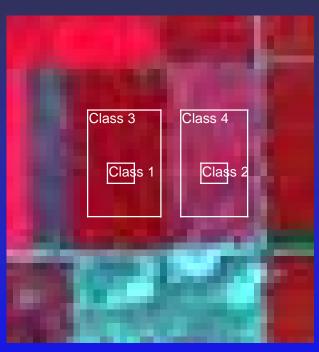


$$\mu_{1} = \begin{bmatrix} 83.4 \\ 25.7 \end{bmatrix} \qquad \mu_{2} = \begin{bmatrix} 85.2 \\ 29.3 \end{bmatrix}$$

$$\Sigma_{1} = \begin{bmatrix} 1.17 \\ 0.06 & 0.24 \end{bmatrix} \qquad \Sigma_{2} = \begin{bmatrix} 1.66 \\ 0.73 & 2.97 \end{bmatrix}$$

$$\rho_{1} = 0.11 \qquad \rho_{2} = 0.33$$

$$\rho_{13} = \frac{\sigma_{13}}{\sqrt{\sigma_{1}^{2}\sigma_{3}^{2}}}$$
$$-1 \le \rho_{jk} \le +1$$

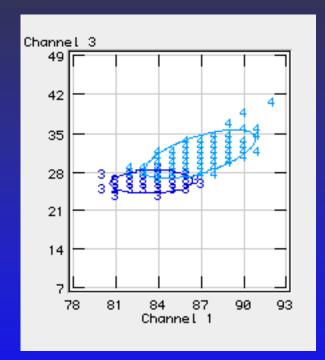


200 pixel training

$$\mu_{3} = \begin{bmatrix} 83.5 \\ 26.2 \end{bmatrix} \qquad \mu_{4} = \begin{bmatrix} 86.9 \\ 31.2 \end{bmatrix}$$

$$\Sigma_{3} = \begin{bmatrix} 1.86 \\ 0.13 & 1.00 \end{bmatrix} \qquad \Sigma_{4} = \begin{bmatrix} 3.31 \\ 2.42 & 4.43 \end{bmatrix}$$

$$\rho_{3} = 0.09 \qquad \qquad \rho_{4} = 0.63$$



12 pixel training

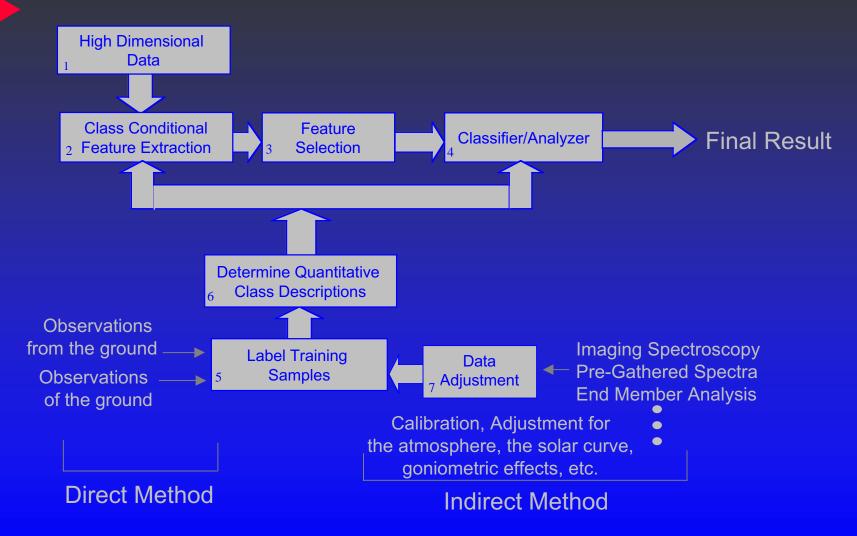
$$\mu_{1} = \begin{bmatrix} 83.4 \\ 25.7 \end{bmatrix} \qquad \mu_{2} = \begin{bmatrix} 85.2 \\ 29.3 \end{bmatrix}$$

$$\Sigma_{1} = \begin{bmatrix} 1.17 \\ 0.06 & 0.24 \end{bmatrix} \qquad \Sigma_{2} = \begin{bmatrix} 1.66 \\ 0.73 & 2.97 \end{bmatrix}$$

$$\rho_{1} = 0.11 \qquad \rho_{2} = 0.33$$

- Mean Vector A First Order Statistic
- Covariance Matrix A Second Order Statistic
- To Perfectly Represent an Arbitrary Distribution Would Require Statistics of All Orders.
- The Number of Samples Required for Acceptable Estimation Error Grows Rapidly With Order.
- With Typical (Finite) Numbers of Training Samples
 - First Order Statistics Can Usually Be Estimated Satisfactorily.
 - Second Order Statistics Are More Problematic But Usually Acceptable.
 - Statistics Beyond Second Order Are Usually Unusable.
- Thus complex classes must be modeled by a (small) collection of estimated density functions, i.e. subclasses.

Analysis System



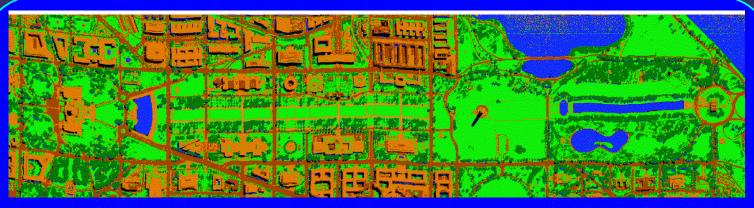
An exhaustive, separable, informational value list of classes is key. Subclasses may be necessary to adequately model all classes.

HYDICE Airborne System
1208 Scan Lines, 307 Pixels/Scan Line
210 Spectral Bands in 0.4-2.4 µm Region
155 Megabytes of Data
(Not yet Geometrically Corrected)

Define Desired Classes

Training areas designated by polygons outlined in white

Thematic Map of DC Mall



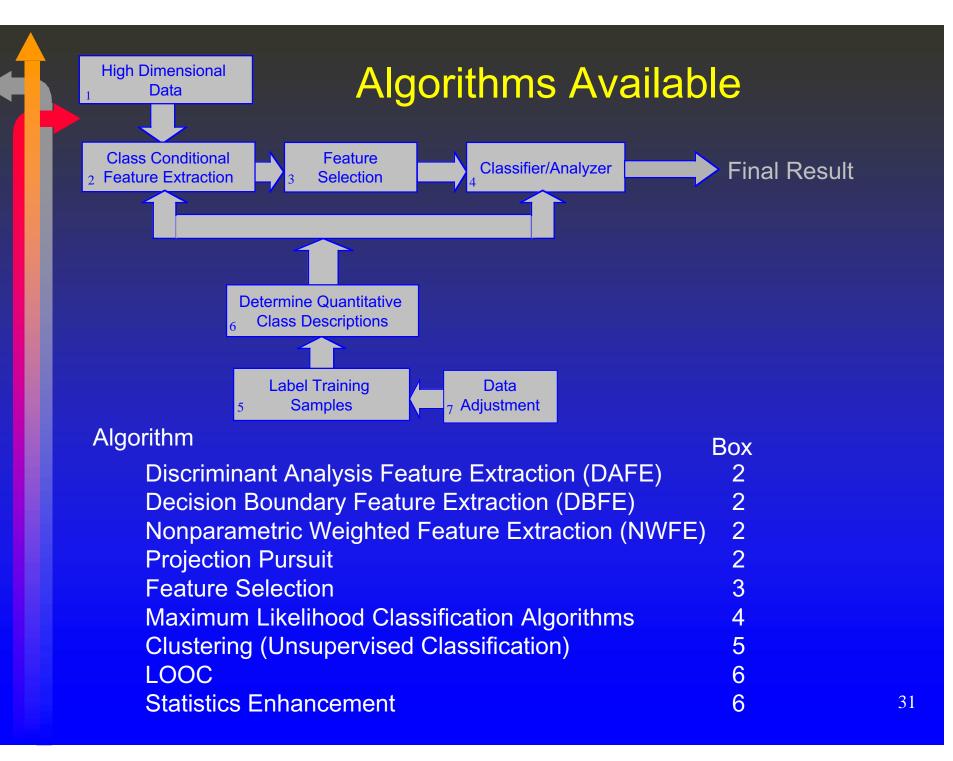
Legend		Operation	CPU Time (sec.)	Analyst Time
	Roofs	Display Image Define Classes	18	< 20 min.
	Streets	Feature Extraction	12	
	Grass	Reformat	67	
	Trees	Initial Classification		
	Paths	Inspect and Mod. T		≈ 5 min.
	Water	Final Classification	33	~ OF min
	Shadows	Total	164 sec = 2.7 min.	≈ 25 min.
(No preprocessing involved)				

MultiSpec®

- Import Data (Binary or ASCII)
- Histogram & Display Images
- Cluster (Single Pass or Iterative)
- Define Classes (Rectangular, Polygonal)
- Feature Definition (Subsets, or Optimal Subspaces)
- Statistics Enhancement (Via Labeled & Unlabeled)
- Classification (Spectral or Spectral/Spatial)
- Results Display (Thematic and Tabular)
- Utility Functions (Graph Spectra, Scatter Diagrams, Principal Components, Ratios, Add Bands, Mosaicing, Changing Geometry, Visualization aids, etc.)

Available via WWW at:

http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/ Additional documentation via WWW at: http://dynamo.ecn.purdue.edu/~landgreb/publications.html



Textbook Synopsis

Signal Theory Methods in Multispectral Remote Sensing David Landgrebe

To be published by John Wiley and Sons, Inc, January 8, 2003

Part I. A Brief Overview

Chapter 1. Introduction and overview of the multispectral approach

Part II. The Basics for Conventional Multispectral Data

Chapter 2. Measurements and Sensor System Fundamentals

Chapter 3. Fundamental Concepts of Pattern Recognition

Part III. Additional Details

Chapters on: Training A Classifier, Hyperspectral Data Characteristics, Feature Definition, A Data Analysis Paradigm & Examples, Use of Spatial Variations, Noise in Remote Sensing Systems, Multispectral Image Data Preprocessing

Appendix: An Outline of Probability Theory

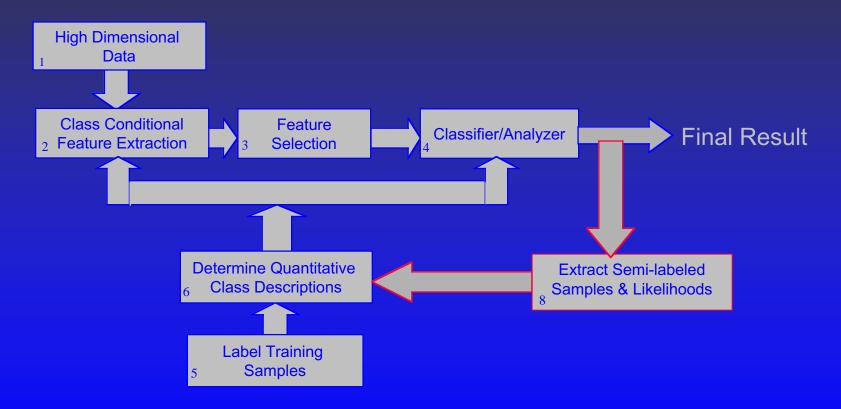
Exercises

Student Compact Disc

Color Figures of text material MultiSpec-based projects

Analysis System

The primary limitation is estimation error due to finite training.



Use the classified samples which have high likelihood as additional training samples.