## Linear Feature Extraction from Digital Remote Sensing Data Using Neural Network Analysis

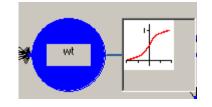
#### Genong (Eugene) Yu and Ryan R. Jensen

Department of Geography, Geology and Anthropology, Indiana State University, Terre Haute, IN 47807

- Linear feature extraction
- Hypotheses
  - NN vs MLC
  - Edge-enhancement
  - Scale effect

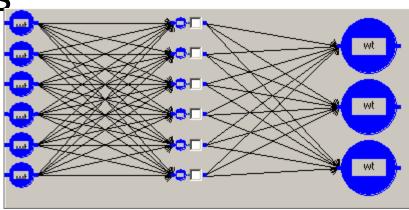
## Methodology

- Linear feature extraction
  - Sobel edge detector
  - Neural network approach
  - Conventional approach

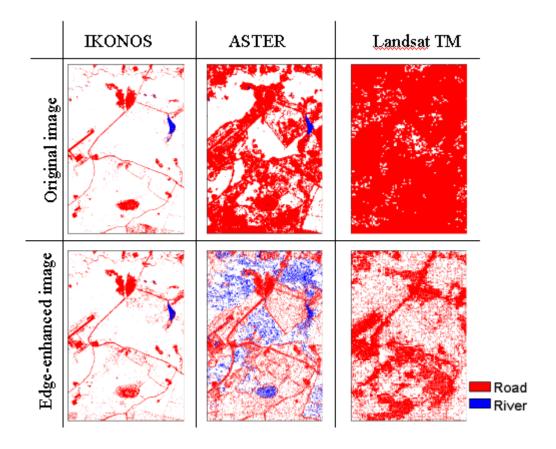


Images: IKONOS, ASTER, Landsat TM

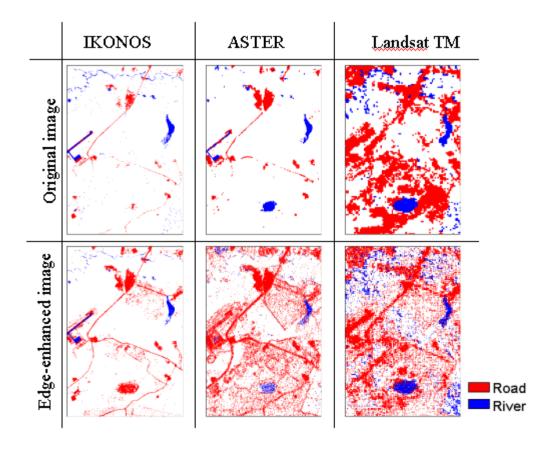
Features: Rivers, roads



## Conventional results

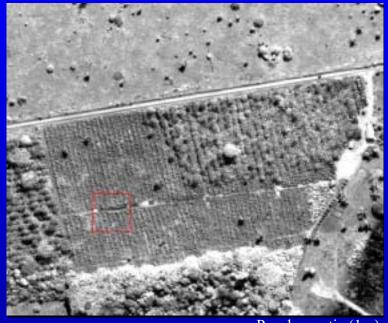


## NN results



# Thematic information extraction from a high spatial resolution (IKONOS) image of a heterogeneous landscape in Rondônia, Brazil: Coping with sensor tradeoffs





True Color (4m)

Panchromatic (1m)

**Bharath Ganesh-Babu** 

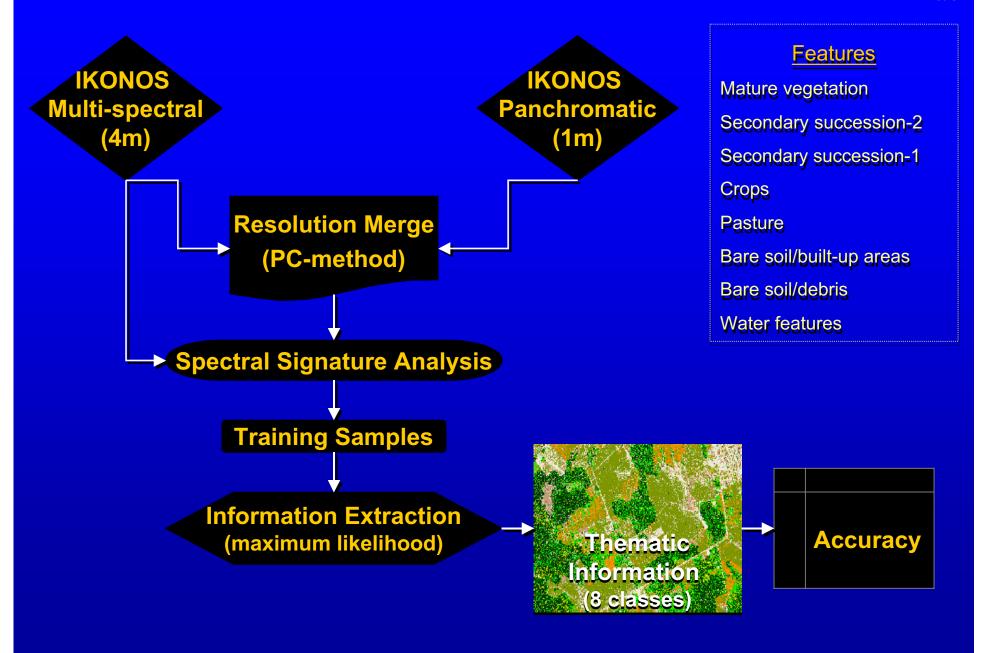
**Graduate Student** 

Department of Geography, Geology and Anthropology

**Indiana State University** 

## Study area and data characteristics

- Equatorial rainforest (now fragmented)
- June, July and August Dry; Winter
- Agro-pastoral land uses
- Mature/succession vegetation and riparian land covers
- Data acquired on: 28<sup>th</sup> May 2001 (start of dry season)
- Area covered: 154.5 km²
- Bands: Blue, Green, Red and NIR (4m); Pan (1m)



### Findings and lessons learnt

- Very poor accuracy (similar results for two different training sample sets)
- Very difficult to select samples of landscape
   level features at high spatial resolution
- Absence of mid-infrared band, was handicap while differentiating spectral signatures
- Enhanced images need longer processing time and larger storage space

#### Conclusion and future considerations

- Are data in high spatial resolution feasible for landscape-wide studies?
- Enhanced image may be used for reference and not training itself
- Future: Reliable ground truth information, multisensor/scale (upscaling), explore different classification techniques (ECHO, ANN etc.)

## URBAN LU/LC CLASSIFICATION



Idrissa Tiemogo
Indiana State University
Geography, Geology, and Anthropology

## **URBAN LANDSCAPE**

#### Diversity of the Materials

- Concrete
- Metal
- Plastic
- Water
- Grass, Trees, Shrubs
- Soils, etc.



#### Heterogeneous Features

- Buildings
- Transportation network
- Utilities
- Recreational areas
- etc.



SPATIAL/SPECTRAL COMPLEXITY

#### **RESOLUTION CONSIDERATIONS**

- Spatial Resolution
  - Depends on the classification level
  - Sensors resolution have to be half of the width of the object of interest
  - In general, higher resolution images are needed
- Spectral Resolution
  - Visible, NIR, MIR, and Panchromatic are commonly used

#### **OBJECTIVE**

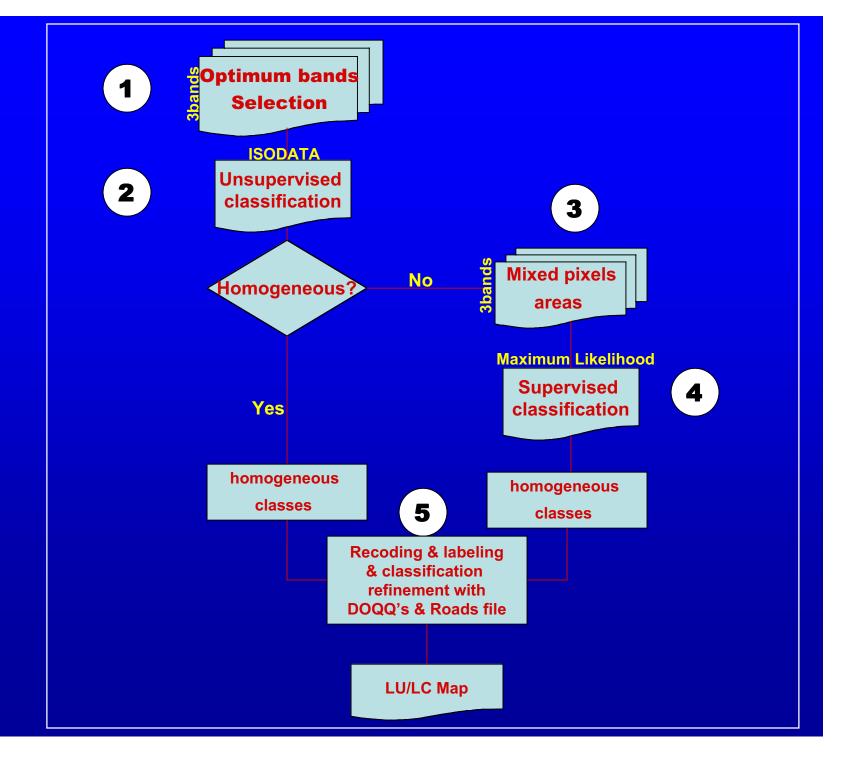
To improve urban land use land cover classification accuracy

#### **DATABASE**

- 30 X 30 meters Landsat TM image acquired in July 1995
- 7.5 ' topographic maps
- 2000 Road network vector files
- 1 X 1 meter resolution DOQQs

#### STUDY AREA

Marion county, Indiana (main city Indianapolis)



#### CONCLUSION

- Due to the complexity of urban landscape, the use of conventional classification methods are not accurate.
- Hybrid classification improves urban LU/LC classification
- High resolution DOQQ's facilitates the refinement of the classification
- Requires more time than traditional methods

## Vegetation Change Detection of Amazon Estuary

Xiaofang Wei GEOG 667 Ryan Jensen

#### Introduction

 Objective: Detection of vegetation change in the Amazon estuary

Study Area: Ponta de Pedras, Brazil

Data: Landsat TM image
 (July 21, 1985 and July 22, 1991)



### Methodology

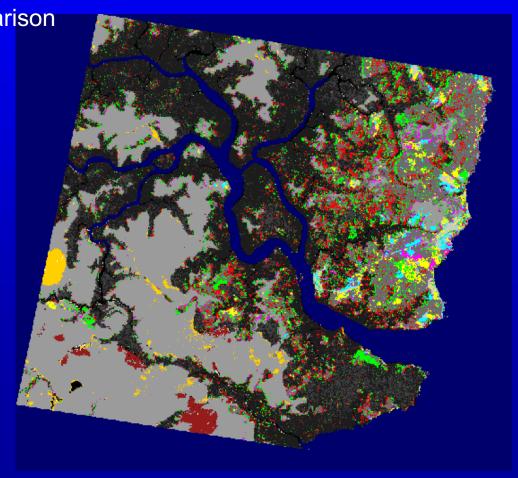
- Post-Classification Comparison
  - Classification of individual image
  - Change matrix to create the change image
- Principle Component Analysis
  - Highly-correlated components ----consistent features
  - Least-correlated components----changes

## **Analysis and Result**

Post-classification comparison

Selected change image (1985-1991)

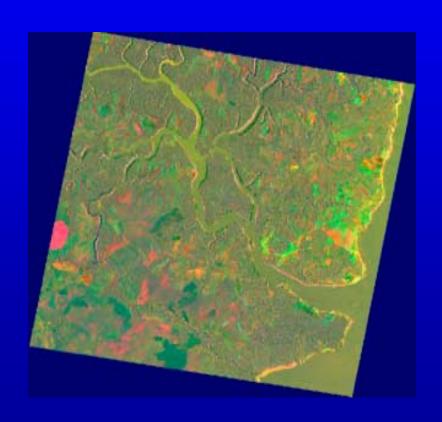
Forest to SS
SS to forest
Bare land to savanna
SS to savanna
Bare land expand
Other to savanna
Savanna to other



## **Analysis and Result**

Principle Component Analysis





Unchanged image (R= PC2, G= PC1, B= PC1)

Changed image (R= PC3, G= PC4, B= PC5)

#### **Discussion**

- Post-classification comparison
  - Detailed "from-to" information
  - Dependant on the accuracy of individual classification
  - Time consuming
  - Principle component analysis
    - More accurate
    - Spectral change
    - Hard to link the spectral change with the land cover class

## Remote Sensing for Water Quality Issues in the Lower Rio Grande Valley (LRGV) of Texas: NAFTA in Perspective



Department of Geography, Geology, and
Anthropology
Indiana State University
Terre Haute, Indiana

Shahriar Nayeri December 2002

#### NAFTA's impacts since 1993

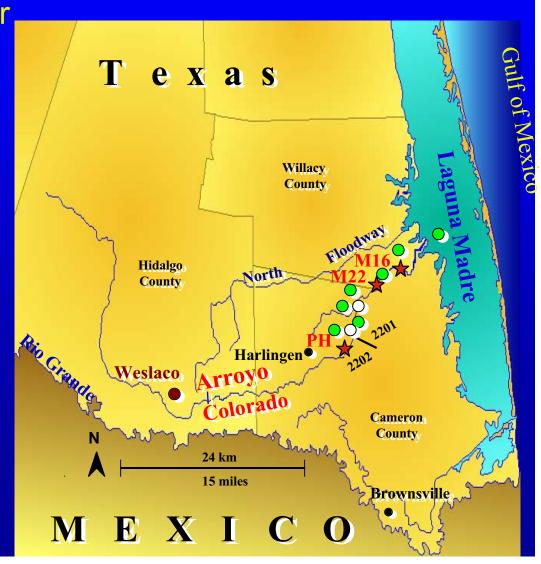
- Rapid population growth
- Economic expansion
- Increased demand for Water

#### **LRGV & Rio Grande**

- Agriculturally productive
- Unique Geography
- "The water source"
- Water quality decrease

#### **Arroyo Colorado (AC)**

- "The source for LLM"
- Recent pollution
- Significance for LRGV (\$)



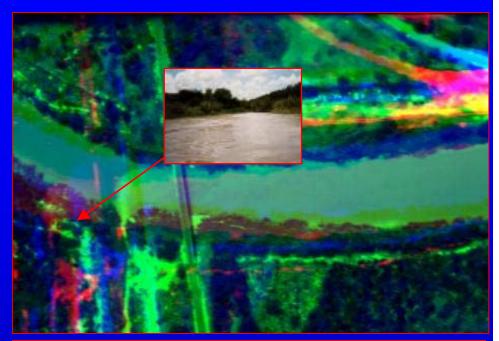
#### **Methodology**

#### A. Image data

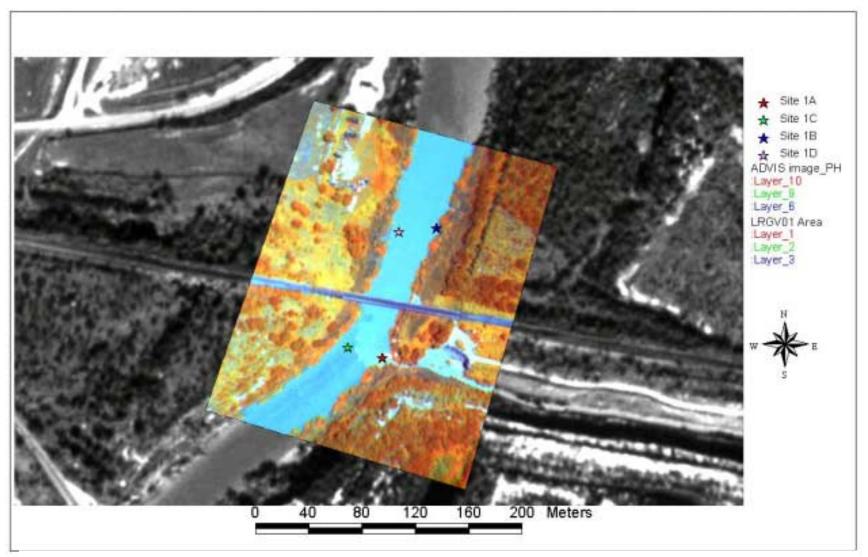
- 1. Point based collection
- 2. Pre-processing
- 3. Classification
- 4. Image analysis
- 5. Accuracy Assessment

#### **B. Sample Data**

- 1. In situ water sample collection
- 2. GPS
- 3. Laboratory analysis of water samples
- C. Data correlation analysis
- D. Develop model







Water sampling sites located by GPS are shown on georeferenced ADVIS image (10-9-6 RGB), with a JPEG air photo of area in background. Locations M, N, and S represent Middleplume, Upnorthplume, and Upsouthplume coordinates on the image where additional spectral Profiles were generated.

#### Downstream Collection Sites PH, M22, and M16 - ADVIS bands 12-4-6 RGB

